Основные характеристики чувствительности анализаторов. Ощущение Изменение чувствительности анализатора под влиянием раздражения

09.07.2023
  • II. Системы, развитие которых можно представить с помощью Универсальной Схемы Эволюции
  • lt;variant>возможность обращения к жестким дискам других компьютеров
  • MS Access. На основе данных перечисленных объектов можно создать Форму.
  • Различные органы чувств, дающие нам сведения о состоянии окружающего мира, могут быть более или менее чувствительны к отображаемым ими явлениям, т. е. могут отражать эти явления с большей или меньшей точностью. Чувствительность органов чувств определяется минимальным раздражителем, который в данных условиях оказывается способным вызвать ощущение.

    Минимальная сила раздражителя, вызывающая едва заметное ощущение, называется нижним абсолютным порогом чувствительности. Раздражители меньшей силы, так называемые подпороговые, не вызывают ощущений. Нижний порог ощущений определяет уровень абсолютной чувствительности данного анализатора. Между абсолютной чувствительностью и величиной порога существует обратная зависимость: чем меньше величина порога, тем выше чувствительность данного анализатора. Это отношение можно выразить формулой Е = 1/Р, где Е – чувствительность, Р – пороговая величина.

    Анализаторы обладают различной чувствительностью. У человека очень высокую чувствительность имеют зрительный и слуховой анализаторы. Как показали опыты С.И. Вавилова, человеческий глаз способен видеть свет при попадании на его сетчатку всего 2–8 квантов лучистой энергии. Это позволяет видеть темной ночью горящую свечу на расстоянии до 27 км.

    Слуховые клетки внутреннего уха обнаруживают движения, амплитуда которых составляет менее 1 % диаметра молекулы водорода. Благодаря этому мы слышим тиканье часов в полной тишине на расстоянии до 6 м. Порог одной обонятельной клетки человека для соответствующих пахучих веществ не превышает 8 молекул. Этого достаточно, чтобы ощутить запах при наличии одной капли духов в помещении из 6 комнат. Чтобы вызвать вкусовое ощущение, требуется по крайней мере в 25 000 раз больше молекул, чем для создания обонятельного ощущения. В этом случае чувствуется присутствие сахара в растворе одной его чайной ложки на 8 л воды.

    Абсолютная чувствительность анализатора ограничивается не только нижним, но и верхним порогом чувствительности, т. е. максимальной силой раздражителя, при которой еще возникает адекватное действующему раздражителю ощущение. Дальнейшее увеличение силы раздражителей, действующих на рецепторы, вызывает в них лишь болевые ощущения (такое влияние оказывают, например, сверх громкий звук и слепящая яркость).



    Величина абсолютных порогов зависит от характера деятельности, возраста, функционального состояния организма, силы и длительности раздражения.

    Кроме величины абсолютного порога ощущения характеризуются показателем относительного, или дифференциального, порога. Минимальное различие между двумя раздражителями, вызывающее едва заметную разницу в ощущениях, называется порогом различения, разностным или дифференциальным порогом. Немецкий физиолог Э. Вебер, проверяя способность человека определять более тяжелый из двух предметов в правой и левой руке, установил, что дифференциальная чувствительность относительна, а не абсолютна. Это значит, что отношение едва заметного различия к величине исходного стимула – величина постоянная. Чем больше интенсивность исходного стимула, тем больше нужно увеличить его, чтобы заметить разницу, т. е. тем больше величина едва заметного различия.

    Дифференциальный порог ощущений для одного и того же органа представляет собой постоянную величину и выражается следующей формулой: dJ/J = C, где J – исходная величина раздражителя, dJ – его прирост, вызывающий едва заметное ощущение изменения величины раздражителя, а С – константа. Величина дифференциального порога для разных модальностей неодинакова: для зрения она составляет примерно 1/100, для слуха – 1/10, для тактильных ощущений – 1/30. Закон, воплощенный в приведенной формуле, называется законом Бугера – Вебера. Необходимо подчеркнуть, что он справедлив только для средних диапазонов.



    Основываясь на экспериментальных данных Вебера, немецкий физик Г. Фехнер выразил зависимость интенсивности ощущений от силы раздражителя следующей формулой: E = k*logJ + C, где E – величина ощущений, J – сила раздражителя, k и C – константы. Согласно закону Вебера – Фехнера, величина ощущений прямо пропорциональна логарифму интенсивности раздражителя. Иначе говоря, ощущение изменяется гораздо медленнее, чем растет сила раздражения. Возрастанию силы раздражения в геометрической прогрессии соответствует рост ощущения в арифметической прогрессии.

    Чувствительность анализаторов, определяемая величиной абсолютных порогов, изменяется под влиянием физиологических и психологических условий. Изменение чувствительности органов чувств под влиянием действия раздражителя называется сенсорной адаптацией. Выделяются три вида этого явления.

    1. Адаптация как полное исчезновение ощущения в процессе продолжительного действия раздражителя. Обычным фактом является отчетливое исчезновение обонятельных ощущений вскоре после того, как мы попадаем в помещение с неприятным запахом. Однако полной зрительной адаптации вплоть до исчезновения ощущений при действии постоянного и неподвижного раздражителя не происходит. Это объясняется компенсацией неподвижности раздражителя за счет движения самих глаз. Постоянные произвольные и непроизвольные движения рецепторного аппарата обеспечивают непрерывность и изменчивость ощущений. Эксперименты, в которых искусственно создавались условия стабилизации изображения относительно сетчатки глаза (изображение помещалось на специальную присоску и двигалось вместе с глазом), показали, что зрительное ощущение исчезало через 2–3 с.

    2. Негативная адаптация – притупление ощущений под влиянием действия сильного раздражителя. Например, когда из полутемной комнаты мы попадаем в ярко освещенное пространство, то сначала мы бываем ослеплены и не способны различать вокруг какие-либо детали. Через некоторое время чувствительность зрительного анализатора резко снижается и мы начинаем видеть. Другой вариант негативной адаптации наблюдается при погружении руки в холодную воду: в первые мгновения действует сильный холодный раздражитель, а затем интенсивность ощущений снижается.

    3. Позитивная адаптация – повышение чувствительности под влиянием действия слабого раздражителя. В зрительном анализаторе это темновая адаптация, когда чувствительность глаз увеличивается под влиянием пребывания в темноте. Аналогичной формой слуховой адаптации является адаптация к тишине.

    Адаптация имеет огромное биологическое значение: она позволяет улавливать слабые раздражители и предохранять органы чувств от чрезмерного раздражения в случае воздействия сильных.

    Интенсивность ощущений зависит не только от силы раздражителя и уровня адаптации рецептора, но и от раздражений, воздействующих в данный момент на другие органы чувств. Изменение чувствительности анализатора под влиянием других органов чувств называется взаимодействием ощущений. Оно может выражаться как в повышении, так и в понижении чувствительности. Общая закономерность состоит в том, что слабые раздражители, воздействующие на один анализатор, повышают чувствительность другого и, наоборот, сильные раздражители понижают чувствительность других анализаторов при их взаимодействии. Например, сопровождая чтение книги тихой, спокойной музыкой, мы повышаем чувствительность и восприимчивость зрительного анализатора; слишком громкая музыка, напротив, способствует их понижению.

    Повышение чувствительности в результате взаимодействия анализаторов и упражнений называется сенсибилизацией. Возможности тренировки органов чувств и их совершенствования очень велики. Можно выделить две сферы, определяющие повышение чувствительности органов чувств:

    1) сенсибилизацию, к которой стихийно приводит необходимость компенсации сенсорных дефектов: слепоты, глухоты. Например, у некоторых людей, лишенных слуха, настолько сильно развивается вибрационная чувствительность, что они даже могут слушать музыку;

    2) сенсибилизацию, вызванную деятельностью, специфическими требованиями профессии. Например, высокой степени совершенства достигают обонятельные и вкусовые ощущения у дегустаторов чая, сыра, вина, табака и т. д.

    Таким образом, ощущения развиваются под влиянием условий жизни и требований практической трудовой деятельности.

    Нижний порог ощущений - минимальная величина раздражителя, вызывающая едва заметное ощущение. Верхний порог ощущений - максимальная величина раздражителя, которую анализатор способен воспринимать адекватно. Диапазон чувствительности - интервал между нижним и верхним порогом ощущений.

    Дифференциальный порог - наименьшая величина различий между раздражителями, когда разница между ними еще улавливается (закон Вебера).

    Оперативный порог - величина различия между сигналами, при которой точность и скорость различения достигают максимума. Величина оперативного порога в 10-15 раз больше величины дифференциального порога.

    Временной порог - минимальная продолжительность воздействия раздражителя, необходимая для возникновения ощущения.

    Латентный период реакции - промежуток времени от момента подачи сигнала до момента возникновения ощущения.

    Инерция - время исчезновения ощущения после окончания воздействия.

    Для осуществления эффективного воздействия на человека необходимо учитывать характеристики его анализаторов, которые определяются опытным путем (например, смена темпа речи) или уже определены и закреплены в специальной литературе. Известно, например, что инерция зрения у нормального человека составляет 0,1-0,2 сек, поэтому время действия сигнала и интервал между появляющимися сигналами должны быть не меньше времени сохранения ощущений, равного 0,2-0,5 сек. В противном случае будут замедляться скорость и точность реагирования, поскольку во время прихода нового сигнала у человека будет еще оставаться образ предыдущего.

    В процессе общения - ощущения человека человеком - также присутствует инерция, диктуя свой "закон": до тех пор, пока вы видите, что восприятие вашего "старого" образа еще свежо в памяти, не стремитесь быстро и навязчиво проявить себя в новом качестве: это объясняется тем, что адекватной реакции не последует, причем чем более впечатлительна личность, на которую производится воздействие, тем инертнее она будет реагировать на изменения.

    Ощущения и их адекватность, или, иными словами, психологические возможности человека по приему информации, наиболее важны в деятельности тех людей, работа которых требует высокой степени точности: инженеров, врачей и т.д.

    Чувствительность анализаторов непостоянна и изменяется под воздействием физиологических и психологических условий. Органы чувств обладают свойством приспособления, или адаптации. Адаптация может проявляться и как полное исчезновение ощущения в процессе продолжительного воздействия раздражителя, и как понижение или повышение чувствительности под влиянием воздействия раздражителя.

    Интенсивность ощущений зависит не только от силы раздражителя и уровня адаптации рецепторов, но и от раздражений, воздействующих в данный момент на другие органы чувств. Изменение чувствительности анализаторов под влиянием раздражения других органов чувств называется взаимодействием ощущений. Взаимодействие ощущений проявляется в повышении и понижении чувствительности: слабые раздражители повышают чувствительность анализаторов, а сильные понижают.

    Взаимодействие ощущений проявляется в явлениях сенсибилизации и синестезии. Сенсибилизация (лат. sensibilis - чувствительный) - повышение чувствительности нервных центров под влиянием воздействия раздражителя. Сенсибилизация может развиться не только путем применения побочных раздражителей, но и путем упражнений. Так, у музыкантов развивается высокая слуховая чувствительность, у дегустаторов - обонятельные и вкусовые ощущения. Синестезия - это возникновение под влиянием раздражения некоторого анализатора ощущения, характерного для другого анализатора. Так, при воздействии звуковых раздражителей у человека могут возникать зрительные образы.

    Боб Нельсон (Bob Nelson)

    Чаще всего анализаторы спектра применяются для измерения сигналов очень малого уровня. Это могут быть известные сигналы, параметры которых необходимо измерить, или неизвестные сигналы, которые нужно обнаружить. В любом случае, для улучшения этого процесса следует иметь представление о методах повышения чувствительности анализатора спектра. В этой статье мы обсудим оптимальные настройки для измерения сигналов малого уровня. Кроме того, мы обсудим применение коррекции шума и функции снижения собственных шумов анализатора для максимального повышения чувствительности прибора.

    Средний уровень собственных шумов и коэффициент шума

    Чувствительность анализатора спектра можно узнать из его технических характеристик. В роли этого параметра может выступать либо средний уровень собственных шумов (DANL ), либо коэффициент шума (NF ). Средний уровень собственных шумов представляет собой амплитуду собственных шумов анализатора спектра в заданном диапазоне частот с 50‑омной нагрузкой на входе и входным ослаблением 0 дБ. Обычно этот параметр выражается в дБм/Гц. В большинстве случаев усреднение выполняется по логарифмической шкале. Это приводит к снижению отображаемого среднего уровня шума на 2,51 дБ. Как мы узнаем из дальнейшего обсуждения, именно это снижение уровня шумов отличает средний уровень собственных шумов от коэффициента шума. Например, если в технических характеристиках анализатора указано значение среднего уровня собственных шумов – 151 дБм/Гц при полосе пропускания фильтра ПЧ (RBW ) 1 Гц, то с помощью настроек анализатора вы можете снизить уровень собственных шумов устройства как минимум до этого значения. Кстати, немодулированный сигнал (CW), имеющий ту же амплитуду, что и шум анализатора спектра, окажется при измерении на 2,1 дБ выше уровня шумов из-за суммирования двух сигналов. Аналогичным образом наблюдаемая амплитуда шумоподобных сигналов будет на 3 дБ превышать уровень собственных шумов.

    Собственный шум анализатора состоит из двух компонентов. Первый из них определяется коэффициентом шума (NF ас ), а второй представляет собой тепловой шум. Амплитуда теплового шума описывается уравнением:

    NF = kTB,

    где k = 1,38×10–23 Дж/K - постоянная Больцмана; T - температура (К); B - полоса (Гц), в которой измеряется шум.

    Эта формула определяет энергию теплового шума на входе анализатора спектра с установленной нагрузкой 50 Ом. В большинстве случаев полоса приводится к 1 Гц, и при комнатной температуре расчетное значение теплового шума 10log(kTB) = –174 дБм/Гц.

    В результате значение среднего уровня собственных шумов в полосе 1 Гц описывается уравнением:

    DANL = –174+NF ас = 2,51 дБ. (1)

    Кроме того,

    NF ас = DANL +174+2,51. (2)

    Примечание. Если для параметра DANL используется среднеквадратическое усреднение мощности, то член 2,51 можно опустить.

    Таким образом, значение среднего уровня собственных шумов –151 дБм/Гц эквивалентно значению NF ас = 25,5 дБ.

    Настройки, влияющие на чувствительность анализатора спектра

    Усиление анализатора спектра равно единице. Это означает, что экран калибруется по входному порту анализатора. Таким образом, если подать на вход сигнал с уровнем 0 дБм, измеренный сигнал будет равняться 0 дБм плюс/минус погрешность прибора. Это нужно учитывать при использовании в анализаторе спектра входного аттенюатора или усилителя. Включение входного аттенюатора заставляет анализатор повышать эквивалентное усиление каскада ПЧ для сохранения калиброванного уровня на экране. Это, в свою очередь, повышает уровень собственных шумов на ту же величину, сохраняя, тем самым, прежнее отношение сигнал/шум. Это справедливо и для внешнего аттенюатора. Кроме того, нужно сделать пересчет на полосу пропускания фильтра ПЧ (RBW ), большую 1 Гц, добавив член 10log(RBW /1). Эти два члена позволяют определить уровень собственных шумов анализатора спектра при разных значениях ослабления и полосы разрешения.

    Уровень шумов = DANL + ослабление + 10log(RBW ). (3)

    Добавление предусилителя

    Для снижения собственных шумов анализатора спектра можно использовать встроенный или внешний предусилитель. Обычно в технических характеристиках указывается второе значение среднего уровня собственных шумов с учетом встроенного предусилителя, и при этом можно использовать все приведенные выше уравнения. При использовании внешнего предусилителя новое значение среднего уровня собственных шумов можно рассчитать, каскадируя уравнения для коэффициента шума и считая усиление анализатора спектра равным единице. Если рассмотреть систему, состоящую из анализатора спектра и усилителя, то получится уравнение:

    NF сист = NF предус +(NF ас –1)/G предус . (4)

    Используя значение NF ас = 25,5 дБ из предыдущего примера, усиление предусилителя 20 дБ и коэффициент шума 5 дБ, мы можем определить общий коэффициент шума системы. Но сначала нужно преобразовать значения в отношение мощностей и взять логарифм от результата:

    NF сист = 10log(3,16+355/100) = 8,27 дБ. (5)

    Теперь можно использовать уравнение (1) для определения нового значения среднего уровня собственных шумов с внешним предусилителем, просто заменив NF ас на NF сист , рассчитанное в уравнении (5). В нашем примере предусилитель существенно уменьшает DANL с –151 до –168 дБм/Гц. Однако это не дается даром. Предусилители, как правило, обладают большой нелинейностью и низким значением точки компрессии, что ограничивает возможность измерения сигналов большого уровня. В таких случаях более полезным оказывается встроенный предусилитель, поскольку его можно включать и отключать по мере необходимости. Это особенно справедливо для автоматизированных контрольно-измерительных систем.

    До сих пор мы обсуждали, как влияют полоса пропускания фильтра ПЧ, аттенюатор и предусилитель на чувствительность анализатора спектра. В большинстве современных анализаторов спектра предусмотрены методы измерения собственных шумов и коррекции результатов измерений на основе полученных данных. Эти методы применяются уже многие годы.

    Коррекция шума

    При измерении характеристик некоторого тестируемого устройства (ТУ) анализатором спектра наблюдаемый спектр складывается из суммы kTB , NF ас и входного сигнала ТУ. Если отключить ТУ и подключить к входу анализатора нагрузку 50 Ом, спектр будет представлять собой сумму kTB и NF ас . Эта трасса является собственным шумом анализатора. В общем случае коррекция шумов заключается в измерении собственного шума анализатора спектра с большим усреднением и сохранении этого значения в виде «поправочной трассы». Затем вы подключаете к анализатору спектра тестируемое устройство, измеряете спектр и заносите результаты в «измеренную трассу». Поправка осуществляется путем вычитания «поправоч- ной трассы» из «измеренной трассы» и отображения результатов в виде «результирующей трассы». Эта трасса представляет собой «сигнал ТУ» без дополнительного шума:

    Результирующая трасса = измеренная трасса – поправочная трасса = [сигнал ТУ + kTB + NF ас ]–[kTB + NF ас ] = сигнал ТУ. (6)

    Примечание. Перед вычитанием все значения преобразовывались из дБм в мВт. Результирующая трасса представлена в дБм.

    Эта процедура улучшает отображение сигналов малого уровня и позволяет точнее измерять амплитуду благодаря устранению погрешности, связанной с собственными шумами анализатора спектра.


    На рис. 1 показан сравнительно простой метод коррекции шума путем применения математической обработки трассы. Сначала выполняется усреднение собственных шумов анализатора спектра с нагрузкой на входе, результат сохраняется в трассе 1. Затем подключается ТУ, захватывается входной сигнал, а результат сохраняется в трассе 2. Теперь можно использовать математическую обработку - вычитание двух трасс и занесение результатов в трассу 3. Как видите, коррекция шума особенно эффективна, когда входной сигнал близок к уровню собственных шумов анализатора спектра. Сигналы большого уровня содержат значительно меньшую долю шума, и поправка не дает заметного эффекта.

    Основной недостаток такого подхода заключается в том, что при каждом изменении настроек приходится отключать тестируемое устройство и подключать нагрузку 50 Ом. Метод получения «поправочной трассы» без отключения ТУ заключается в увеличении ослабления входного сигнала (например, на 70 дБ) для того, чтобы шум анализатора спектра значительно превысил входной сигнал, и сохранении полученных результатов в «поправочной трассе». В этом случае «поправочная трасса» определяется уравнением:

    Поправочная трасса = сигнал ТУ + kTB + NF ас + аттенюатор. (7)

    kTB + NF ас + аттенюатор >> сигнал ТУ,

    мы можем опустить член «сигнал ТУ» и заявить, что:

    Поправочная трасса = kTB + NF ас + аттенюатор. (8)

    Вычитая известное значение ослабления аттенюатора из формулы (8), мы можем получить исходную «поправочную трассу», которую использовали в ручном методе:

    Поправочная трасса = kTB + NF ас . (9)

    В этом случае проблема заключается в том, что «поправочная трасса» действительна только для текущих настроек прибора. Изменение настроек, таких как центральная частота, полоса обзора или полоса пропускания фильтра ПЧ, делает значения, сохраненные в «поправочной трассе», некорректными. Лучший подход заключается в знании значений NF ас во всех точках частотного спектра и применении «поправочной трассы» при любых настройках.

    Снижение собственных шумов

    Анализатор сигналов Agilent N9030A PXA (рис. 2) имеет уникальную функцию снижения собственных шумов (NFE). Коэффициент шума анализатора сигналов PXA во всем частотном диапазоне прибора измеряется в процессе его изготовления и калибровки . Затем эти данные сохраняются в памяти прибора. Когда пользователь включает NFE, измерительный прибор рассчитывает «поправочную трассу» для текущих настроек и сохраняет значения коэффициента шума. Это позволяет обойтись без измерения собственных шумов PXA, как это делалось в ручной процедуре, что существенно упрощает коррекцию шумов и экономит время, уходящее на измерение шумов прибора при изменении настроек.


    В любом из описанных методов из «измеренной трассы» вычитается тепловой шум kTB и NF ас , что позволяет получать результаты, лежащие ниже значения kTB . Эти результаты могут быть достоверными во многих случаях, но не во всех. Достоверность может уменьшаться, когда измеренные значения очень близки или равны собственному шуму прибора. Фактически результатом при этом будет бесконечное значение в дБ. Практическая реализация коррекции шума обычно включает введение порога или градуированного уровня вычитания вблизи уровня собственных шумов прибора.

    Заключение

    Мы рассмотрели некоторые методы измерения сигналов низкого уровня с помощью анализатора спектра. При этом мы установили, что на чувствительность измерительного прибора оказывает влияние полоса пропускания фильтра ПЧ, ослабление аттенюатора и наличие предусилителя. Для дополнительного повышения чувствительности прибора можно применять такие методы, как математическая коррекция шума и функция снижения собственных шумов. На практике значительного повышения чувствительности можно добиться, устранив потери во внешних цепях.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Введение

    Изменчивость чувствительности анализаторов и ее причины

    Заключение

    Литература

    Введение

    О богатстве окружающего мира, о звуках и красках, запахах и температуре, величине и о многом другом мы узнаем благодаря органам чувств. С помощью органов чувств человеческий организм получает в виде ощущений разнообразную информацию о состоянии внешней и внутренней среды.

    Ощущение - это простейший психический процесс, состоящий в отражении отдельных свойств предметов и явлений материального мира, а также внутренних состояний организма при непосредственном воздействии раздражителей на соответствующие рецепторы.

    Органы чувств получают, отбирают, накапливают информацию и передают ее в мозг, ежесекундно получающий и перерабатывающий этот огромный и неиссякаемый поток. В результате возникает адекватное отражение окружающего мира и состояния самого организма.

    Ощущения - это форма отражения адекватных раздражителей. Адекватным возбудителем зрительного ощущения является электромагнитное излучение, характеризующееся длинами волн в диапазоне от 380 до 770 миллимикрон, которые трансформируются в зрительном анализаторе в нервный процесс, порождающий зрительное ощущение. Слуховые ощущения - результат воздействия на рецепторы звуковых волн с частотой колебаний от 16 до 20000 Гц. Тактильные ощущения вызываются действием механических раздражителей на поверхность кожи. Вибрационные, приобретающие особое значение для глухих, вызываются вибрацией предметов. Свои специфические раздражителя имеют и другие ощущения (температурные, обонятельные, вкусовые). Однако различные виды ощущений характеризуются не только специфичностью, но и общими для них свойствами. К таким свойствам относятся качество, интенсивность, продолжительность и пространственная локализация.

    Изменчивость чувствительности анализаторов и ее причины

    Качество - это основная особенность данного ощущения, отличающая его от других видов ощущений и варьирующая в пределах данного вида. Слуховые ощущения отличаются по высоте, тембру, громкости; зрительные - по насыщенности, цветовому тону и т.п. Качественное многообразие ощущений отражает бесконечное многообразие форм движения материи.

    Интенсивность ощущения является его количественной характеристикой и определяется силой действующего раздражителя и функциональным состоянием рецептора.

    Продолжительность ощущения есть его временная характеристика. Она также определяется функциональным состоянием органа чувств, но главным образом временем действия раздражителя и его интенсивностью. При воздействии раздражителя на орган чувств ощущение возникает не сразу, а спустя некоторое время, которое назвали латентным (скрытым) периодом ощущения. Латентный период для различных видов ощущений неодинаков: для тактильных ощущений, например, он составляет 130 миллисекунд, для болевых - 370 миллисекунд. Вкусовое ощущение возникает спустя 50 миллисекунд после нанесения химического раздражителя на поверхность языка.

    Подобно тому, как ощущение не возникает одновременно с началом действия раздражителя, оно и не исчезает одновременно с прекращением его действия. Эта инерция ощущений проявляется в так называемом последействии.

    Зрительное ощущение обладает некоторой инерцией и исчезает не сразу после того, как перестает действовать вызвавший его раздражитель. На инерции зрения, на сохранении зрительного впечатления в течении некоторого времени основан принцип кинематографа.

    Подобное явление происходит и в других анализаторах. Например, слуховые, температурные, болевые и вкусовые ощущения также продолжаются некоторое время после действия раздражителя.

    Для ощущений также характерна пространственная локализация раздражителя. Пространственный анализ, осуществляемый дистантными рецепторами, дает нам сведения о локализации раздражителя в пространстве. Контактные ощущения (тактильные, болевые, вкусовые) соотносятся той частью теля, на которую воздействует раздражитель. При этом локализация болевых ощущений бывает разлитой и менее точной, чем тактильных.

    Различные органы чувств, дающие нам сведения о состоянии окружающего нас внешнего мира, могут отображать эти явления с большей или меньшей точностью. Чувствительность органа чувств определяется минимальным раздражителем, который в данных условиях оказывается способным вызвать ощущение. Минимальная сила раздражителя, вызывающая едва заметное ощущение, называется нижним абсолютным порогом чувствительности.

    Раздражители меньшей силы, так называемые подпороговые, не вызывают возникновения ощущений, и сигналы о них не передаются в кору головного мозга. Кора в каждый отдельный момент из бесконечного количества импульсов воспринимает лишь жизненно актуальные, задерживая все остальные, в том числе импульсы от внутренних органов. Такое положение биологически целесообразно. Нельзя представить себе жизнь организма, у которого кора больших полушарий одинаково воспринимала бы все импульсы и обеспечивала на них реакции. Это привело бы организм к неминуемой гибели.

    Нижний порог ощущений определяет уровень абсолютной чувствительности данного анализатора. Между абсолютной чувствительностью и величиной порога существует обратная зависимость: чем меньше величина порога, тем выше чувствительность данного анализатора.

    Наши анализаторы обладают различной чувствительностью. Порог одной обонятельной клетки человека для соответствующих пахучих веществ не превышает 8 молекул. Чтобы вызвать вкусовое ощущение, требуется, по крайней мере, в 25 000 раз больше молекул, чем для создания обонятельного ощущения.

    Очень высока чувствительность зрительного и слухового анализатора. Человеческий глаз, как показали опыты С.И. Вавилова, способен видеть свет при попадании на сетчатку всего 2 - 8 квантов лучистой энергии. Это значит, что мы способны были бы видеть в полной темноте горящую свечу на расстоянии до 27 километров. В то же время для того, чтобы мы ощутили прикосновение, необходимо в 100 - 10 000 000 раз больше энергии, чем при зрительных или слуховых ощущениях.

    Абсолютная чувствительность анализатора ограничивается не только нижним, но и верхним порогом ощущения. Верхним абсолютным порогом чувствительности называется максимальная сила раздражителя, при которой ещё возникает адекватное действующему раздражителю ощущение. Дальнейшее увеличение силы раздражителей, действующих на наши рецепторы, вызывает в них лишь болевое ощущение (например, очень громкий звук, слепящая яркость).

    Величина абсолютных порогов, как нижнего, так и верхнего, изменяется в зависимости от различных условий: характера деятельности и возрасти человека, функционального состояния рецептора, силы и длительности раздражения и т.п.

    С помощью органов чувств мы можем не только констатировать наличие или отсутствие того или иного раздражителя, но и различать раздражители по их силе и качеству. Минимальное различие между двумя раздражителями, вызывающее едва заметное различие ощущений, называется порогом различения или разностным порогом.

    Разностная чувствительность, или чувствительность к различению, также находится в обратной зависимости к величине порога различения: чем порог различения больше, тем меньше разностная чувствительность.

    Ощущение возникает как реакция нервной системы на тот или иной раздражитель и имеет рефлекторный характер. Физиологической основой ощущения является нервный процесс, возникающий при действии раздражителя на адекватный ему анализатор.

    Анализатор состоит из трех частей: 1) периферического отдела (рецептора), являющегося специальным трансформатором внешней энергии в нервный процесс; 2) афферентных (центростремительных) и эфферентных (центробежных) нервов - проводящих путей, соединяющих периферический отдел анализатора с центральным; 3) подкорковых и корковых отделов (мозговой конец) анализатора, где происходит переработка нервных импульсов, приходящих из периферических отделов.

    Для возникновения ощущения необходима работа всего анализатора как целого. Воздействие раздражителя на рецептор вызывает появление раздражения. Начало этого раздражения выражается в превращении внешней энергии в нервный процесс, который производится рецептором. От рецептора этот процесс по центростремительному нерву достигает ядерной части анализатора. Когда возбуждение достигает корковых клеток анализатора, возникает ответ организма на раздражение. Мы ощущаем свет, звук, вкус или другие качества раздражителей.

    Анализатор составляет исходную и важнейшую часть всего пути нервных процессов, или рефлекторной дуги. Рефлекторное кольцо состоит из рецептора, проводящих путей, центральной части и эффектора. Взаимосвязь элементов рефлекторного кольца обеспечивает основу ориентировки сложного организма в окружающем мире, деятельность организма в зависимости от условий его существования.

    Процесс зрительного ощущения не только начинается в глазу, но и завершается в нем. То же самое характерно и для других анализаторов. Между рецептором и мозгом существует не только прямая (центростремительная), но и обратная (центробежная) связь. Принцип обратной связи, открытый И.М. Сеченовым, требует признания того, что орган чувств является попеременно рецептором и эффектором. Ощущение не есть результат центростремительного процесса, в его основе лежит полный и притом сложный рефлекторный акт, подчиняющийся в своем формировании и протекании общим законам рефлекторной деятельности.

    Динамика процессов, происходящих в подобном рефлекторном кольце, есть своеобразное уподобление свойствам внешнего воздействия. Например, осязание является именно таким процессом, в котором движения рук повторяют очертания данного объекта, как бы уподобляясь его форме. Глаз действует по такому же принципу благодаря сочетанию деятельности своего оптического “прибора” с глазодвигательными реакциями. Движения голосовых связок также воспроизводят объективную звуковысотную природу. При выключении вокально-моторного звена в экспериментах неизбежно возникало явление своеобразной звуковысотной глухоты. Таким образом, благодаря сочетанию сенсорных и моторных компонентов сенсорный (анализаторный) аппарат воспроизводит объективные свойства воздействующих на рецептор раздражителей и уподобляется их природе.

    Органы чувств представляют собой, по сути дела, фильтры энергии, через которые проходят соответствующие изменения среды.

    Согласно одной из гипотез, которая мне наиболее близка, отбор информации в ощущениях происходит на основе критерия новизны. Действительно, в работе всех органов чувств наблюдается ориентировка на изменение раздражителей. При действии постоянного раздражителя чувствительность как бы притупляется и сигналы от рецепторов перестают поступать в центральный нервный аппарат. Так, ощущение прикосновения имеет тенденцию к угасанию. Оно может совершенно исчезнуть, если раздражитель вдруг перестанет двигаться по коже. Чувствительные нервные окончания сигнализируют мозгу о наличии раздражения только тогда, когда изменяется сила раздражения, даже если время, в течение которого он сильнее или слабее давит на кожу, очень непродолжительно.

    Факты, свидетельствующие об угасании ориентировочной реакции на постоянный раздражитель, были получены в опытах Е.Н. Соколова. Нервная система тонко моделирует свойства внешних объектов, действующих на органы чувств, создавая их нервные модели. Эти модели выполняют функцию избирательно действующего фильтра. При несовпадении воздействующего на рецептор раздражителя в данный момент со сложившейся ранее нервной моделью появляются импульсы рассогласования, вызывающие ориентировочную реакцию. И наоборот, ориентировочная реакция угасает на тот раздражитель, который ранее применялся в опытах.

    Чувствительность анализаторов, определяемая величиной абсолютных порогов, не постоянна и изменяется под влиянием ряда физиологических и психологических условий, среди которых особое место занимает явление адаптации.

    Адаптация, или приспособление, - это изменение чувствительности органов чувств под влиянием действия раздражителя.

    Можно различать три разновидности этого явления.

    1. Адаптация как полное исчезновение ощущения в процессе продолжительного действия раздражителя. В случае действия постоянных раздражителей ощущение имеет тенденцию к угасанию. Например, легкий груз, покоящийся на коже, вскоре перестает ощущаться. Обычным фактом является и отчетливое исчезновение обонятельных ощущений вскоре после того, как мы попадаем в атмосферу с неприятным запахом. Интенсивность вкусового ощущения ослабевает, если соответствующее вещество в течение некоторого времени держать во рту и, наконец, ощущение может угаснуть совсем.

    Полной адаптации зрительного анализатора при действии постоянного и неподвижного раздражителя не наступает. Это объясняется компенсацией неподвижности раздражителя за счет движений самого рецепторного аппарата. Постоянные произвольные и непроизвольные движения глаз обеспечивают непрерывность зрительного ощущения. Эксперименты, в которых искусственно создавались условия стабилизации1 изображения относительно сетчатки глаз, показали, что при этом зрительное ощущение исчезает спустя 2-3 секунды после его возникновения, т.е. наступает полная адаптация.

    2. Адаптацией называют также другое явление, близкое к описанному, которое выражается в притуплении ощущения под влиянием действия сильного раздражителя. Например, при погружении руки в холодную воду интенсивность ощущения, вызываемого температурным раздражителем, снижается. Когда мы из полутемной комнаты попадаем в ярко освещенное пространство, то сначала бываем ослеплены и не способны различать вокруг какие-либо детали. Через некоторое время чувствительность зрительного анализатора резко снижается, и мы начинаем нормально видеть. Это понижение чувствительности глаза при интенсивном световом раздражении называют световой адаптацией.

    Описанные два вида адаптации можно объединить термином негативная адаптация, поскольку в результате их снижается чувствительность анализаторов.

    3. Адаптацией называют повышение чувствительности под влиянием действия слабого раздражителя. Этот вид адаптации, свойственный некоторым видам ощущений, можно определить как позитивную адаптацию.

    В зрительном анализаторе это темновая адаптация, когда увеличивается чувствительность глаза под влиянием пребывания в темноте. Аналогичной формой слуховой адаптации является адаптация к тишине.

    Адаптационное регулирование уровня чувствительности в зависимости от того, какие раздражители (слабые или сильные) воздействуют на рецепторы, имеет огромное биологическое значение. Адаптация помогает посредством органов чувств улавливать слабые раздражители и предохраняет органы чувств от чрезмерного раздражения в случае необычайно сильных воздействий.

    Явление адаптации можно объяснить теми периферическими изменениями, которые происходят в функционировании рецептора при продолжительном воздействии на него раздражителя. Так, известно, что под влиянием света разлагается зрительный пурпур, находящийся в палочках сетчатки глаза. В темноте же, напротив, зрительный пурпур восстанавливается, что приводит к повышению чувствительности. Явление адаптации объясняется и процессами, протекающими в центральных отделах анализаторов. При длительном раздражении кора головного мозга отвечает внутренним охранительным торможением, снижающим чувствительность. Развитие торможения вызывает усиленное возбуждение других очагов, что способствует повышению чувствительности в новых условиях.

    Интенсивность ощущений зависит не только от силы раздражителя и уровня адаптации рецептора, но и от раздражителей, воздействующих в данный момент на другие органы чувств. Изменение чувствительности анализатора под влиянием раздражения других органов чувств называется взаимодействием ощущений.

    В литературе описаны многочисленные факты изменения чувствительности, вызванные взаимодействием ощущений. Так, чувствительность зрительного анализатора изменяется под влиянием слухового раздражения.

    Слабые звуковые раздражители повышают цветовую чувствительность зрительного анализатора. В то же время наблюдается резкое ухудшение различительной чувствительности глаза, когда в качестве слухового раздражителя применяется, например, громкий шум авиационного мотора.

    Зрительная чувствительность повышается также под влиянием некоторых обонятельных раздражении. Однако при резко выраженной отрицательной эмоциональной окраске запаха наблюдается снижение зрительной чувствительности. Аналогично этому при слабых световых раздражениях усиливаются слуховые ощущения, а воздействие интенсивных световых раздражителей ухудшает слуховую чувствительность. Известны факты повышения зрительной, слуховой, тактильной и обонятельной чувствительности под влиянием слабых болевых раздражений.

    Изменение чувствительности какого-либо анализатора наблюдается и при подпороговом раздражении других анализаторов. Так, П.П. Лазаревым (1878-1942) были получены факты снижения зрительной чувствительности под влиянием облучения кожи ультрафиолетовыми лучами.

    Таким образом, все наши анализаторные системы способны в большей или меньшей мере влиять друг на друга. При этом взаимодействие ощущений, как и адаптация, проявляется в двух противоположных процессах: повышении и понижении чувствительности. Общая закономерность здесь состоит в том, что слабые раздражители повышают, а сильные понижают чувствительность анализаторов при их взаимодействии.

    Взаимодействие ощущений проявляется еще в одном роде явлений, называемом синестезией. Синестезия - это возникновение под влиянием раздражения одного анализатора ощущения, характерного для другого анализатора. Синестезия наблюдается в самых различных видах ощущений. Наиболее часто встречаются зрительно-слуховые синестезии, когда при воздействии звуковых раздражителей у субъекта возникают зрительные образы. У различных людей нет совпадения в этих синестезиях, однако, они довольно постоянны для каждого отдельного лица.

    На явлении синестезии основано создание в последние годы цветомузыкальных аппаратов, превращающих звуковые образы в цветовые. Реже встречаются случаи возникновения слуховых ощущений при воздействии зрительных раздражении, вкусовых - в ответ на слуховые раздражители и т.п. Синестезией обладают далеко не все люди, хотя она довольно широко распространена. Явление синестезии - еще одно свидетельство постоянной взаимосвязи анализаторных систем человеческого организма, целостности чувственного отражения объективного мира.

    Повышение чувствительности в результате взаимодействия анализаторов и упражнения называется сенсибилизацией.

    Физиологическим механизмом взаимодействия ощущений являются процессы иррадиации и концентрации возбуждения в коре головного мозга, где представлены центральные отделы анализаторов. По И.П. Павлову, слабый раздражитель вызывает в коре больших полушарий процесс возбуждения, который легко иррадирует (распространяется). В результате иррадиации процесса возбуждения повышается чувствительность другого анализатора. При действии сильного раздражителя возникает процесс возбуждения, имеющий, наоборот, тенденцию к концентрации. По закону взаимной индукции это приводит к торможению в центральных отделах других анализаторов и снижению чувствительности последних.

    Изменение чувствительности анализаторов может быть вызвано воздействием второсигнальных раздражителей. Так, получены факты изменения электрической чувствительности глаз и языка в ответ на предъявление испытуемым слов “кислый, как лимон”. Эти изменения были аналогичны тем, которые наблюдались при действительном раздражении языка лимонным соком.

    Зная закономерности изменения чувствительности органов чувств, можно путем применения специальным образом подобранных побочных раздражителей сенсибилизировать тот или иной рецептор, т.е. повышать его чувствительность.

    Сенсибилизация может быть достигнута и в результате упражнений.

    Возможности тренировки органов чувств и их совершенствования очень велики. Можно выделить две сферы, определяющие повышение чувствительности органов чувств: 1) сенсибилизация, к которой стихийно приводит необходимость компенсации сенсорных дефектов (слепота, глухота) и 2) сенсибилизация, вызванная деятельностью, специфическими требованиями профессии субъекта.

    Утрата зрения или слуха в известной мере компенсируется развитием других видов чувствительности.

    чувствительность анализатор ощущение раздражитель

    Заключение

    Особый интерес представляет возникновение у человека чувствительности к раздражителям, по отношению к которым не существует адекватного рецептора. Такова, например, дистанционная чувствительность к препятствиям у слепых.

    Явления сенсибилизации органов чувств наблюдаются у лиц, длительно занимающихся некоторыми специальными профессиями. Опытные летчики по слуху легко определяют количество оборотов двигателя. Они свободно отличают 1300 от 1340 оборотов в минуту. Нетренированные люди улавливают разницу только между 1300 и 1400 оборотами.

    Все это - доказательство того, что наши ощущения развиваются под влиянием условий жизни и требований практической трудовой деятельности.

    Несмотря на большое количество подобных фактов, проблема упражнения органов чувств изучена ещё недостаточно. Изучение её, позволит существенно расширить способности человека!

    Литература:

    1. Немов Р.С. Психология. В 3-х кн. Кн.1.Общие основы психологии.- М.: ВЛАДОС, 2000.

    2. Общая психология. /Под редакцией А.В. Петровского. - М.: Просвещение, 1991

    3. Основы психологии. Практикум/ Ред.-сост. Л.Д. Столяренко. Ростов н/Д, 1999.

    4. Рубинштейн С.Л. Основы общей психологии. - в 2 т. - М., 1984.

    5. Столяренко Л.Д. Основы психологии. - Ростов-на-Дону: Феникс, 1997.

    Размещено на Allbest.ru

    Подобные документы

      Значение изучения анализаторов человека с точки зрения информационных технологий. Виды анализаторов человека, их характеристика. Физиология слухового анализатора как средства восприятия звуковой информации. Чувствительность слухового анализатора.

      реферат , добавлен 27.05.2014

      Структуры и механизмы интеграции боли. Особенности болевой чувствительности слизистой оболочки полости рта. Болевая чувствительность, нейрофизиологические механизмы восприятия боли. Болевая рецепция полости рта. Физиологические механизмы обезболивания.

      курсовая работа , добавлен 14.12.2014

      Причина возникновения возбуждения в рецепторе. Возникновение сложных психических актов на базе ощущений. Синтез и анализ афферентных импульсов клетками. Механизм аккомодации глаза и его чувствительность к восприятию света. Различие высоты и силы звука.

      лекция , добавлен 25.09.2013

      Принцип работы анализатора, его отделы. Проприоцептивная чувствительность, мышечные рецепторы. Вестибулярный и висцеральный анализаторы, интерорецепторы. Виды висцерорецепторов в системах организма. Тактильный, ноцицептивный и слуховой анализаторы.

      контрольная работа , добавлен 12.09.2009

      Нервная система как важнейшая интегрирующая функция организма. Участие нервной системы человека в процессе адекватного приспособления к окружающей среде. Нижний и верхний абсолютный порог чувствительности. Классификация нервных рецепторов и их функции.

      реферат , добавлен 23.02.2010

      Морфофункциональная организация зрительной системы: кожная рецепция, тактильная чувствительность и ее пространственные пороги. Проводящие пути соматосенсорной системы. Характеристика половых особенностей тактильной чувствительности студентов 2 курса.

      курсовая работа , добавлен 17.05.2015

      Теории образования временной связи условного рефлекса. Физиология кожной чувствительности человека. Стадии и механизм условного рефлекса. Афферентные раздражения кожно-кинестетического анализатора. Отношения между интенсивностью стимула и ответом.

      контрольная работа , добавлен 09.01.2015

      Биологическая роль вкусовых ощущений. Детальная характеристика вкусового анализатора. Этапы первичного преобразования химической энергии вкусовых веществ в энергию нервного возбуждения вкусовых рецепторов. Особенности адаптации вкусовой чувствительности.

      презентация , добавлен 28.04.2015

      Понятие, строение и функции сенсорной системы, кодирование информации. Структурно-функциональная организация анализаторов. Свойства и особенности рецепторного и генераторного потенциалов. Цветовое зрение, зрительные контрасты и последовательные образы.

      контрольная работа , добавлен 05.01.2015

      Адаптация и сенсибилизация, влияние факторов на вкусовые и обонятельные ощущения. Экспериментально вызванная сенсибилизация обоняния, индивидуальная восприимчивость запахов и вкусов. Физиотерапевтические и хирургические способы восстановления обоняния.


    Различают две основные формы изменения чувствительности анализатора - адаптацию и сенсибилизацию.

    Адаптацией называют изменение чувствительности анализатора под влиянием его приспособления к действующему раздражителю. Она может быть направлена как на повышение, так и на понижение чувствительности. Так, например, уже через 30-40 минут пребывания в темноте чувствительность глаза повышается в 20 000 раз, а в дальнейшем и в 200 000 раз. Глаз приспосабливается (адаптируется) к темноте в течение 4-5 минут - частично, 40 минут - достаточно и 80 минут - полностью. Такую адаптацию, которая приводит к повышению чувствительности анализатора, называют позитивной.

    Негативная адаптация сопровождается снижением чувствительности анализатора. Так, в случае действия постоянных раздражителей, они начинают ощущаться слабее и исчезают. Например, обычным фактом для нас является отчетливое исчезновение обонятельных ощущений вскоре после того, как мы попадаем в атмосферу с неприятным запахом. Интенсивность вкусового ощущения тоже ослабевает, если соответствующее вещество долго держать во рту. Близким к описанному является и явление притупления ощущения под влиянием сильного раздражителя. Например, если из темноты выйти на яркий свет, то после "ослепления" чувствительность глаза резко снижается и мы начинаем нормально видеть.

    Явление адаптации объясняется действием как периферических так и центральных механизмов. При действии механизмов, регулирующих чувствительность на самих рецепторах, говорят о сенсорной адаптации. В случае более сложной стимуляции, которая хотя и улавливается рецепторами, но не столь важна для деятельности, вступают в действие механизмы центральной регуляции на уровне ретикулярной формации, которая блокирует передачу импульсов, чтобы они не "загромождали" сознание избыточной информацией. Эти механизмы лежат в основе адаптации по типу привыкания к раздражителям (габитуации).

    Сенсибилизация - это повышение чувствительности к воздействию ряда раздражителей; физиологически объясняется повышением возбудимости коры головного мозга к определенным стимулам в результате упражнения или взаимодействия анализаторов. По И.П. Павлову, слабый раздражитель вызывает в коре больших полушарий процесс возбуждения, который легко распространяется (ир-

    радиирует) по коре. В результате иррадиации процесса возбуждения повышается чувствительность других анализаторов. Напротив, при действии сильного раздражителя возникает процесс возбуждения, который имеет тенденцию к концентрации, и по закону взаимной индукции это приводит к торможению в центральных отделах других анализаторов и снижению их чувствительности. Например, при звучании тихого тона одинаковой интенсивности и при одновременном ритмичном воздействии света на глаз будет казаться, что тон также меняет свою интенсивность. Другим примером взаимодействия анализаторов может служить известный факт повышения зрительной чувствительности при слабом вкусовом ощущении кислого во рту. Зная закономерности изменения чувствительности органов чувств, можно путем применения специально подобранных побочных раздражителей сенсибилизировать тот или иной анализатор. Сенсибилизация может быть достигнута и в результате упражнений. Эти данные имеют важное практическое приложение, например, в случаях необходимости компенсации сенсорных дефектов (слепота, глухота) за счет других, сохранных анализаторов или при развитии звуковысотного слуха у детей, занимающихся музыкой.

    Таким образом, интенсивность ощущений зависит не только от силы раздражителя и уровня адаптации рецептора, но и от раздражителей, действующих в данный момент на другие органы чувств. Изменение чувствительности анализатора под влиянием раздражения других органов чувств называется взаимодействием ощущений. Взаимодействие ощущений, как и адаптация, появляется в двух противоположных процессах: повышения и понижения чувствительности. Слабые раздражители, как правило, повышают, а сильные понижают чувствительность анализаторов.

    Взаимодействие анализаторов проявляется и в так называемой синестезии. При синестезии ощущение возникает под влиянием раздражения, характерного для другого анализатора. Наиболее часто возникают зрительно-слуховые синестезии, когда под влиянием слуховых раздражителей возникают зрительные образы ("цветной слух"). Этой способностью обладали многие композиторы - Н.А. Римский-Корсаков, А.П. Скрябин и др. Слухо-вкусовые и зрительно-вкусовые синестезии хотя и встречаются намного реже, но нас не удивляет употребление в речи выражений типа: "острый вкус", "сладкие звуки", "кричащий цвет" и другие.