Что входит в состав бактериальной клетки. Строение и химический состав бактериальной клетки

24.10.2023

Помимо 5 царств живой природы, существует еще два надцарства: прокариоты и эукариоты. Поэтому если рассматривать систематическое положение бактерий, то оно будет следующим:

Почему эти организмы выделяются в отдельный таксон? Все дело в том, что для бактериальной клетки характерно наличие некоторых особенностей, налагающих отпечаток на ее жизнедеятельность и взаимодействие с другими существами и человеком.

Открытие бактерий

Рибосомы - мельчайшие структуры, в большом количестве разбросанные в цитоплазме. Природа их представлена молекулами РНК. Данные гранулы являются материалом, по которому можно определить степень родства и систематическое положение конкретного вида бактерии. Функция их - сборка белковых молекул.

Капсула

Для бактериальной клетки характерно наличие защитных слизистых оболочек, состав которых определяется полисахаридами или полипептидами. Такие структуры имеют название капсул. Различают микро- и макрокапсулы. Данная структура формируется не у всех видов, но у подавляющего большинства, то есть не является обязательной.

От чего защищает капсула бактериальную клетку? От фагоцитоза антителами хозяина, если бактерия патогенная. Либо от высыхания и воздействия вредных веществ, если говорить о других видах.

Слизь и включения

Также необязательные структуры бактерий. Слизь, или гликокаликс, по химической основе является мукоидным полисахаридом. Может формироваться как внутри клетки, так и наружными ферментами. Хорошо растворима в воде. Предназначение: прикрепление бактерии к субстрату - адгезия.

Включения - это микрогранулы в цитоплазме различной химической природы. Это могут быть белки, аминокислоты, нуклеиновые кислоты или полисахариды.

Органоиды движения

Особенности бактериальной клетки также проявляются и в ее движении. Для этого присутствуют жгутики, которые могут быть в разном количестве (от одного до нескольких сотен на клетку). Основа каждого жгутика - белок флагеллин. Благодаря эластичным сокращениям и ритмичным движениям из стороны в сторону бактерия может передвигаться в пространстве. Крепится жгутик к цитоплазматической мембране. Расположение также может варьироваться у разных видов.

Пили

Еще более тонкие, чем жгутики, структуры, принимающие участие в:

  • прикреплении к субстрату;
  • водно-солевом питании;
  • половом размножении.

Состоят из белка пилина, количество их может доходить до нескольких сотен на клетку.

Сходство с клетками растений

Бактериальная и имеют одно неоспоримое сходство - наличие клеточной стенки. Однако если у растений она есть бесспорно, то у бактерий присутствует не у всех видов, то есть относится к необязательным структурам.

Химический состав бактериальной клеточной стенки:

  • пептидогликан муреин;
  • полисахариды;
  • липиды;
  • белки.

Обычно данная структура имеет двойной слой: наружный и внутренний. Функции выполняет такие же, как растений. Поддерживает и обозначает постоянную форму тела и обеспечивает механическую защиту.

Образование спор

Каково строение бактериальной клетки, мы рассмотрели достаточно подробно. Осталось только упомянуть о том, как бактерии могут переживать неблагоприятные условия, очень долгое время не теряя жизнеспособности.

Это им удается путем формирования структуры под названием спора. Она не имеет отношения к размножению и лишь предохраняет бактерии от неблагоприятных условий. По форме споры могут быть различными. При восстановлении нормальных окружающих условий спора инициируется и прорастает в активную бактерию.

Организм бактерии представлен одной единственной клеткой. Формы бактерий разнообразны. Строение бактерий отличается от строения клеток животных и растений.

В клетке отсутствует ядро, митохондрии и пластиды. Носитель наследственной информации ДНК, расположена в центре клетки в свернутом виде. Микроорганизмы, которые не имеют настоящего ядра, относятся к прокариотам. Все бактерии — прокариоты.

Предполагается, что на земле существует свыше миллиона видов этих удивительных организмов. К настоящему времени описано около 10 тыс. видов.

Бактериальная клетка имеет стенку, цитоплазматическую мембрану, цитоплазму с включениями и нуклеотид. Из дополнительных структур некоторые клетки имеют жгутики, пили (механизм для слипания и удержания на поверхности) и капсулу. При неблагоприятных условиях некоторые бактериальные клетки способны образовывать споры. Средний размер бактерий 0,5-5 мкм.

Внешнее строение бактерий

Рис. 1. Строение бактериальной клетки.

Клеточная стенка

  • Клеточная стенка бактериальной клетки является для нее защитой и опорой. Она придает микроорганизму свою, специфическую форму.
  • Клеточная стенка проницаема. Через нее проходят питательные вещества внутрь и продукты обмена (метаболизма) наружу.
  • Некоторые виды бактерий вырабатывают специальную слизь, которая напоминает капсулу, предохраняющую их от высыхания.
  • У некоторых клеток имеются жгутики (один или несколько) или ворсинки, которые помогают им передвигаться.
  • У бактериальных клеток, которые при окрашивании по Граму приобретают розовую окраску (грамотрицательные ), клеточная стенка более тонкая, многослойная. Ферменты, благодаря которым происходит расщепление питательных веществ, выделяются наружу.
  • У бактерий, которые при окрашивании по Граму приобретают фиолетовую окраску (грамположительные ), клеточная стенка толстая. Питательные вещества, которые поступают в клетку, расщепляются в периплазматическом пространстве (пространство между клеточной стенкой и мембраной цитоплазмы) гидролитическими ферментами.
  • На поверхности клеточной стенки имеются многочисленные рецепторы. К ним прикрепляются убийцы клеток — фаги, колицины и химические соединения.
  • Липопротеиды стенки у некоторых видов бактерий являются антигенами, которые называются токсинами.
  • При длительном лечении антибиотиками и по ряду других причин некоторые клетки теряют оболочку, но сохраняют способность к размножению. Они приобретают округлую форму — L-форму и могут длительно сохраняться в организме человека (кокки или палочки туберкулеза). Нестабильные L-формы обладают способностью принимать первоначальный вид (реверсия).

Рис. 2. На фото строение бактериальной стенки грамотрицательных бактерий (слева) и грамположительных (справа).

Капсула

При неблагоприятных условиях внешней среды бактерии образуют капсулу. Микрокапсула плотно прилегает к стенке. Ее можно увидеть только в электронном микроскопе. Макрокапсулу часто образуют патогенные микробы (пневмококки). У клебсиеллы пневмонии макрокапсула обнаруживаются всегда.

Рис. 3. На фото пневмококк. Стрелками указана капсула (электронограмма ультратонкого среза).

Капсулоподобная оболочка

Капсулоподобная оболочка представляет собой образование, непрочно связанное с клеточной стенкой. Благодаря бактериальным ферментам капсулоподобная оболочка покрывается углеводами (экзополисахаридами) внешней среды, благодаря чему обеспечивается слипание бактерий с разными поверхностями, даже совершенно гладкими.

Например, стрептококки, попадая в организм человека, способны слипаться с зубами и сердечными клапанами.

Функции капсулы многообразны:

  • защита от агрессивных условий внешней среды,
  • обеспечение адгезии (слипанию) с клетками человека,
  • обладая антигенными свойствами, капсула оказывает токсический эффект при внедрении в живой организм.

Рис. 4. Стрептококки способны слипаться с эмалью зубов и вместе с другими микробами являются причиной кариеса.

Рис. 5. На фото поражение митрального клапана при ревматизме. Причина — стрептококки.

Жгутики

  • У некоторых бактериальных клеток имеются жгутики (один или несколько) или ворсинки, которые помогают передвигаться. В составе жгутиков находится сократительный белок флагелин.
  • Количество жгутиков может быть разным — один, пучок жгутиков, жгутики на разных концах клетки или по всей поверхности.
  • Движение (беспорядочное или вращательное) осуществляется в результате вращательного движения жгутиков.
  • Антигенные свойства жгутиков оказывают токсический эффект при заболевании.
  • Бактерии, не имеющие жгутиков, покрываясь слизью, способны скользить. У водных бактерий содержатся вакуоли в количестве 40 — 60, наполненные азотом.

Они обеспечивают погружение и всплытие. В почве бактериальная клетка передвигается по почвенным каналам.

Рис. 6. Схема прикрепления и работы жгутика.

Рис. 7. На фото разные типы жгутиковых микробов.

Рис. 8. На фото разные типы жгутиковых микробов.

Пили

  • Пили (ворсинки, фимбрии) покрывают поверхность бактериальных клеток. Ворсинка представляет собой винтообразно скрученную тонкую полую нить белковой природы.
  • Пили общего типа обеспечивают адгезию (слипание) с клетками хозяина. Их количество огромно и составляет от нескольких сотен до нескольких тысяч. С момента прикрепления начинается любой .
  • Половые пили способствуют переносу генетического материала от донора реципиенту. Их количество от 1 до 4-х на одну клетку.

Рис. 9. На фото кишечная палочка. Видны жгутики и пили. Фото сделано при помощи туннельного микроскопа (СТМ).

Рис. 10. На фото видны многочисленные пили (фимбрии) у кокков.

Рис. 11. На фото бактериальная клетка с фимбриями.

Цитоплазматическая мембрана

  • Цитоплазматическая мембрана располагается под клеточной стенкой и представляет собой липопротеин (до 30% липидов и до 70% протеинов).
  • У разных бактериальных клеток разный липидный состав мембран.
  • Мембранные белки выполняют множество функций. Функциональные белки представляют собой ферменты, благодаря которым на цитоплазматической мембране происходит синтез разных ее компонентов и др.
  • Цитоплазматическая мембрана состоит из 3-х слоев. Двойной фосфолипидный слой пронизан глобулинами, которые обеспечивают транспорт веществ в бактериальную клетку. При нарушении ее работы клетка погибает.
  • Цитоплазматическая мембрана принимает участие в спорообразовании.

Рис. 12. На фото отчетливо видна тонкая клеточная стенка (КС), цитоплазматическая мембрана (ЦПМ) и нуклеотид в центре (бактерия Neisseria catarrhalis).

Внутреннее строение бактерий

Рис. 13. На фото строение бактериальной клетки. Строение клетки бактерии отличается от строения клеток животных и растений — в клетке отсутствует ядро, митохондрии и пластиды.

Цитоплазма

Цитоплазма на 75% состоит из воды, остальные 25% приходится на минеральные соединения, белки, РНК и ДНК. Цитоплазма всегда густая и неподвижная. В ней содержатся ферменты, некоторые пигменты, сахара, аминокислоты, запас питательных веществ, рибосомы, мезосомы, гранулы и всевозможные другие включения. В центре клетки концентрируется вещество, которое несет наследственную информацию — нуклеоид.

Гранулы

Гранулы состоят из соединений, которые являются источником энергии и углерода.

Мезосомы

Мезосомы — производные клетки. Имеют разную форму — концентрические мембраны, пузырьки, трубочки, петли и др. Мезосомы имеют связь с нуклеоидом. Участие в делении клетки и спорообразовании — их основное предназначение.

Нуклеоид

Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

Рис. 14. На фото срез бактериальной клетки. В центральной части виден нуклеотид.

Плазмиды

Плазмиды представляют собой автономные молекулы, свернутые в кольцо, двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рис. 15. На фото бактериальная плазмида. Фото сделано с помощью электронного микроскопа.

Рибосомы

Рибосомы бактериальной клетки участвуют в синтезе белка из аминокислот. Рибосомы бактериальных клеток не объединены в эндоплазматическую сеть, как у клеток, имеющих ядро. Именно рибосомы часто становятся «мишенью» для многих антибактериальных препаратов.

Включения

Включения — продукты метаболизма ядерных и безъядерных клеток. Представляют собой запас питательных веществ: гликоген, крахмал, сера, полифосфат (валютин) и др. Включения часто при окраске приобретают иной вид, чем цвет красителя. По валютину можно диагностировать .

Формы бактерий

Форма бактериальной клетки и ее размер имеет большое значение при их идентификации (распознании). Самые распространенные формы — шаровидная, палочковидная и извитая.

Таблица 1. Основные формы бактерий.

Шаровидные бактерии

Шаровидные бактерии называют кокками (от греческого coccus — зерно). Располагаются по одному, по двое (диплококки), пакетами, цепочками и как гроздья винограда. Данное расположение зависит от способа деления клетки. Самые вредные микробы — стафилококки и стрептококки.

Рис. 16. На фото микрококки. Бактерии круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

Рис. 17. На фото бактерии диплококки — Streptococcus pneumoniae.

Рис. 18. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

Рис. 19. На фото бактерии стрептококки (от греческого «стрептос» — цепочка).

Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

Рис. 20. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

Палочковидные бактерии

Палочковидные бактерии, образующие споры, называются бациллами. Они имеют цилиндрическую форму. Самым ярким представителем этой группы является бацилла . К бациллам относятся чумные и гемофильные палочки. Концы палочковидных бактерий могут быть заострены, закруглены, обрублены, расширены или расщеплены. Форма самих палочек может быть правильной и неправильной. Они могут располагаться по одной, по две или образовывать цепочки. Некоторые бациллы называют коккобациллами, так как они имеют округлую форму. Но, все же, их длина превышает ширину.

Диплобациллы — сдвоенные палочки. Сибиреязвенные палочки образовывают длинные нити (цепочки).

Образование спор изменяет форму бацилл. В центре бацилл споры образуются у маслянокислых бактериях, придавая им вид веретена. У столбнячных палочек — на концах бацилл, придавая им вид барабанных палочек.

Рис. 21. На фото бактериальная клетка палочковидной формы. Видны множественные жгутики. Фото сделано с помощью электронного микроскопа. Негатив.

Рис. 24. У маслянокислых бацилл споры образуются в центре, придавая им вид веретена. У столбнячных палочек — на концах, придавая им вид барабанных палочек.

Извитые бактерии

Не более одного оборота имеют изгиб клетки . Несколько (два, три и более) — кампилобактерии. Спирохеты имеют своеобразный вид, который отображен в их названии — «спира» — изгиб и «хатэ» — грива. Лептоспиры («лептос» — узкий и «спера» — извилина) представляют собой длинные нити с тесно расположенными завитками. Бактерии напоминают извитую спираль.

Рис. 27. На фото бактериальная клетка спиралеподобной формы — возбудитель «болезни укуса крыс».

Рис. 28. На фото бактерии лептоспиры — возбудители многих заболеваний.

Рис. 29. На фото бактерии лептоспиры — возбудители многих заболеваний.

Булавовидные

Булавовидную форму имеют коринебактерии — возбудители дифтерии и листериоза. Такую форму бактерии придает расположение метахроматических зерен на ее полюсах.

Рис. 30. На фото коринебактерии.

Подробно о бактерияx читай в статьях:

Бактерии живут на планете Земля более 3,5 млрд. лет. За это время они многому научились и ко многому приспособились. Суммарная масса бактерий огромна. Она составляет около 500 миллиардов тонн. Бактерии освоили практически все известные биохимические процессы. Формы бактерий разнообразны. Строение бактерий за миллионы лет достаточно усложнилось, но и сегодня они считаются наиболее просто устроенными одноклеточными организмами.

Современная наука достигла фантастического прогресса за последние столетия. Однако, некоторые загадки до сих пор будоражат умы выдающихся ученых.

В наши дни так и не найден ответ на актуальный вопрос – сколько же разновидностей бактерий существует на нашей огромной планете?

Бактерия – организм с уникальной внутренней организацией, которому свойственны все процессы, характерные живым организмам. Бактериальная клетка имеет множество удивительных особенностей, одна из которых – разнообразие форм.

Клетка бактерии может обладать сферической, палочковидной, кубической или звездчатой формой. Кроме того, бактерии бывают немного согнуты или формируют разнообразные завитки.

Форма клетки играет важную роль для правильного функционирования микроорганизма, так как она может влиять на возможность бактерии прикрепляться к другим поверхностям, получать необходимые вещества и передвигаться.

Минимальный клеточный размер обычно составляет 0,5 мкм, однако в исключительных случаях величина бактерии может достигать 5,0 мкм.

Строение клетки любой бактерии строго упорядочено. Ее структура значительно отличается от структуры остальных клеток, например растений и животных. Клетки всех видов бактерий не имеют такие элементы, как: дифференцированное ядро, внутриклеточные мембраны, митохондрии, лизосомы.

У бактерий имеются специфические структурные компоненты – постоянные и непостоянные.

К постоянным компонентам относятся: цитоплазматическая мембрана (плазмолемма), клеточная стенка, нуклеоид, цитоплазма. Непостоянными структурами являются: капсула, жгутики, плазмиды, пили, ворсинки, фимбрии, споры.

Цитоплазматическая мембрана


Любую бактерию обволакивает цитоплазматическая мембрана (плазмолемма), которая включает в себя 3 слоя. Мембрана содержит глобулины, отвечающие за выборочную транспортировку разнообразных субстанций в клетку.

Плазмолемма выполняет также следующие важные функции:

  • механическая – обеспечивает автономное функционирование бактерии и всех структурных элементов;
  • рецепторная – белки, находящиеся в плазмолемме, выступают в качестве рецепторов, то есть помогают клетке воспринимать различные сигналы;
  • энергетическая – некоторые белки отвечают за функцию переноса энергии.

Нарушение функционирования плазмолеммы ведет к тому, что бактерия разрушается и погибает.

Клеточная стенка


Структурный компонент, присущий только бактериальным клеткам – клеточная стенка. Это жесткая проницаемая оболочка, которая выступает в роли важней составляющей структурного скелета клетки. Располагается она с внешней стороны от цитоплазматической мембраны.

Клеточная стенка реализует функцию защиты, а кроме того придает клетке постоянную форму. Ее поверхность покрывают многочисленные споры, которые пропускают внутрь необходимые вещества и выводят из микроорганизма продукты распада.

Защита внутренних составляющих от осмотического и механического воздействия – еще одна функция стенки. Она играет незаменимую роль в контроле деления клетки и распределении в ней наследственных признаков. В ее составе содержится пептидогликан, именно он наделяет клетку ценными иммунобиологическими характеристиками.

Толщина клеточной стенки колеблется от 0,01 до 0,04 мкм. С возрастом происходит рост бактерии и количество материала, из которого она построена, соответственно, увеличивается.

Нуклеоид


Нуклеоид – это прокариот, в котором хранится вся наследственная информация бактериальной клетки. Нуклеоид располагается в центральной части бактерии. По своим свойствам он эквивалентен ядру.

Нуклеоид – это одна, замкнутая в кольцо, молекула ДНК. Длина молекулы составляет 1 мм, а объем информации – около 1000 признаков.

Нуклеоид является главным носителем материала о свойствах бактерии и основным фактором передачи этих свойств потомству. Нуклеоид в клетках бактерий не имеет ядрышка, мембраны и основных белков.

Цитоплазма


Цитоплазма – водный раствор, включающий следующие компоненты: минеральные соединения, питательные вещества, белки, углеводы и липиды. Соотношение данных веществ зависит от возраста и типа бактерий.

В цитоплазму входят различные структурные компоненты : рибосомы, гранулы и мезосомы.

  • Рибосомы отвечают за синтез белка. Их химический состав включает молекулы РНК и белок.
  • Мезосомы участвуют в образовании спор и размножении клеток. Могут иметь форму пузырька, петли, трубочки.
  • Гранулы служат дополнительным ресурсом энергии для бактериальных клеток. Эти элементы бывают разнообразных форм. В их составе представлены полисахариды, крахмал, капельки жира.

Капсула


Капсула – это слизистая структура, крепко связанная с клеточной стенкой. Исследуя ее под световым микроскопом, можно заметить, что капсула обволакивает клетку и ее внешние границы имеют четко очерченный контур. В бактериальной клетке капсула служит защитным барьером от фагов (вирусов).

Бактерии формируют капсулу, когда условия внешней среды становятся агрессивными. Капсула включает в свой состав в основном полисахариды, а также в определенных случаях в ней может содержаться клетчатка, гликопротеины, полипептиды.

Основные функции капсулы:

    • адгезия с клетками в организме человека. Например, стрептококки слипаются с эмалью зубов и в союзе с другими микробами провоцируют появление кариеса;
    • защита от негативных условий окружающей среды: токсических веществ, механических повреждений, повышенного уровня кислорода;
    • участие в водном обмене (защита клетки от высыхания);
    • создание дополнительной осмотической преграды.

Капсула формирует 2 слоя:

  • внутренний – часть слоя цитоплазмы;
  • наружный – результат выделительной функции бактерии.

В основу классификации легли особенности строения капсул. Они бывают:

  • нормальные;
  • сложные капсулы;
  • с поперечно-полосатыми фибриллами;
  • прерывистые капсулы.

Некоторые бактерии образуют также микрокапсулу, которая представляет собой слизистое образование. Выявить микрокапсулу можно только под электронным микроскопом, поскольку толщина этого элемента всего 0,2 мкм или даже меньше.

Жгутики


Большинство бактерий имеют поверхностные структуры клетки, которые обеспечивают ее подвижность и передвижение – жгутики. Это длинные отростки в форме левозакрученной спирали, построенные из флагеллина (сократительный белок).

Основная функция жгутиков заключается в том, что они позволяют бактерии передвигаться в жидкой среде в поисках более благоприятных условий. Количество жгутиков в одной клетке может варьироваться: от одного до нескольких жгутиков, жгутиков на всей поверхности клетки или только на одном из ее полюсов.

Существует несколько разновидностей бактерий в зависимости от количества в них жгутиков:

  • Монотрихи – у них имеется только один жгутик.
  • Лофотрихи – имеют определенное количество жгутиков на одном конце бактерии.
  • Амфитрихи – характеризуются наличием жгутиков на полярно противоположных полюсах.
  • Перитрихи – жгутики располагаются по всей поверхности бактерии, им характерно медленно и плавное движение.
  • Атрихи – жгутики отсутствуют.

Жгутики совершают двигательную активность, совершая вращательные движения. Если у бактерий нет жгутиков – она все равно в состоянии перемещаться, а точнее скользить при помощи слизи на поверхности клетки.

Плазмиды


Плазмиды представляют собой небольшие мобильные молекулы ДНК, отдельные от хромосомных факторов наследственности. Эти компоненты обычно содержат генетический материал, повышающий невосприимчивость бактерии к антибиотикам.

Могут передавать свои свойства от одного микроорганизма к другим. Несмотря на все свои особенности, плазмиды не выступают в качестве важных элементов для жизнедеятельности бактериальной клетки.

Пили, ворсинки, фимбрии


Эти структуры локализуются на поверхностях бактерий. Насчитывают от двух единиц до нескольких тысяч на одну клетку. Эти структурные элементы имеет как бактериальная подвижная клетка, так и неподвижная, поскольку они не оказывают никакого влияния на способность передвигаться.

В количественном отношении, пили достигают несколько сотен на одну бактерию. Существуют пили, которые отвечают за питание, водно-солевой обмен, а также конъюгационные (половые) пили.

Ворсинкам характерна полая цилиндрическая форма. Именно через эти структуры в бактерию проникают вирусы.

Ворсинки не считаются обязательными компонентами бактерии, так как и без них может успешно совершаться процесс деления и роста.

Фимбрии располагаются, как правило, на одном конце клетки. Эти структуры позволяют микроорганизму фиксироваться в тканях организма. Некоторые фимбрии имеют особые белки, контактирующие с рецепторными окончаниями клеток.

Фимбрии отличаются от жгутиков тем, что они толще и короче, а также не реализуют функцию движения.

Споры


Споры образуются в случае негативных физических или химических манипуляций над бактерией (в результате высушивания или нехватки питательных веществ). Они разнообразны по размеру спор, так как у различных клеток они могут быть совершенно разным. Различается также и форма спор – они бывают овальными или шаровидными.

По местоположению в клетке споры подразделяются на:

  • центральные – их положение в самом центре, как например, у сибиреязвенной палочки;
  • субтерминальные – располагаются на конце палочки, придавая форму булавы (у возбудителя газовой гангрены).

В благоприятной среде жизненный цикл спор включает следующие этапы:

  • подготовительный этап;
  • этап активации;
  • этап инициации;
  • этап прорастания.

Споры отличаются особой живучестью, которая достигается благодаря своей оболочке. Она многослойна и состоит преимущественно из белка. Повышенная невосприимчивость спор к негативным условиям и внешним воздействиям обеспечивается именно благодаря белкам.

Клетка прокариотических организмов имеет сложное строго упорядоченное строение и обладает принципиальными особенностями ультраструктурной организации и химического состава.

Структурные компоненты бактериальной клетки делят на основные и временные (рис. 2). Основными структурами являются: клеточная стенка, цитоплазматическая мембрана с ее производными, цитоплазма с рибосомами и различными включениями, нуклеоид; временные — капсула, слизистый чехол, жгутики, ворсинки, эндоспоры, образующиеся лишь на определенных этапах жизненного цикла бактерий, у некоторых видов они отсутствуют полностью.

У прокариотической клетки структуры, расположенные снаружи от цитоплазматической мембраны, называют поверхностными (клеточная стенка, капсула, жгутики, ворсинки).

Термин «оболочка» в настоящее время используется для обозначения клеточной стенки и капсулы бактерий или только клеточной стенки, цитоплазматическая мембрана не входит в состав оболочки и относится к протопласту.

Клеточная стенка — важный структурный элемент бактериальной клетки, располагающийся между цитоплазматической мембраной и капсулой; у бескапсульных бактерий — это внешняя оболочка клетки. Она обязательна для всех прокариот, за исключением микоплазм и L-форм бактерий. Выполняет ряд функций: защищает бактерии от осмотического шока и других повреждающих факторов, определяет их форму, участвует в метаболизме; у многих видов патогенных бактерий токсична, содержит поверхностные антигены, а также несет на поверхности специфические рецепторы для фагов. В клеточной стенке бактерий имеются поры, которые участвуют в транспорте экзотоксинов и других экзобелков бактерий. Толщина клеточной стенки 10—100 нм, и на ее долю приходится от 5 до 50 % сухих веществ клетки.

Основным компонентом клеточной стенки бактерий является пептидогликан, или муреин (лат. murus — стенка), — опорный полимер, имеющий сетчатую структуру и образующий ригидный (жесткий) наружный каркас бактериальной клетки. Пептидогликан имеет основную цепь (остов), состоящую из чередующихся остатков N-ацстил-М-глюкозамина и N-ацетилмурамовой кислоты, соединенных 1,4-гликозидными связями, идентичные тетрапептидные боковые цепочки, прикрепляющиеся к молекулам N-ацстилмурамовой кислоты, и короткие поперечные пептидные мостики, связывающие полисахаридные цепи. Два типа связей (гликозидные и пептидные), которые соединяют субъединицы пептидогликана, придают этому гетерополимеру структуру молекулярной сети. Остов пептидогликанового слоя у всех видов бактерий одинаков; тетрапептидные белковые цепочки и пептидные (поперечные) у неодинаковых видов различны.

По тинкториальным свойствам все бактерии подразделяются на две группы: грамположительные и грамотрицателъные. В 1884 г. X. Грам предложил метод окраски, который был использован для дифференцирования бактерий. Сущность метода состоит в том, что грамположительные бактерии прочно фиксируют комплекс генцианвиолета и йода, не подвергаются обесцвечиванию этанолом и поэтому не воспринимают дополнительный краситель фуксин, оставаясь окрашенными в фиолетовый цвет. У грамотрицательных бактерий этот комплекс легко вымывается из клетки этанолом, и они при дополнительном нанесении фуксина окрашиваются в красный цвет. У некоторых бактерий положительная окраска по Граму наблюдается только в стадии активного роста. Способность прокариот окрашиваться по методу Грама или обесцвечиваться этанолом определяется спецификой химического состава и ультраструктуры их клеточной стенки. Пептидогликан у грамположительных бактерий — основной компонент клеточной стенки и составляет от 50 до 90 %, у грамотрицательных — 1 —10 %. Структурные микрофибриллы пептидогликана грамотрицательных бактерий сшиты менее компактно, поэтому поры в их пептидогликановом слое значительно шире, чем в молекулярном каркасе грамположитсльных бактерий. При такой структурной организации пептидогликана фиолетовый комплекс генцианвиолета и йода у грамотрицательных бактерий будет вымываться быстрее.

Клеточная стенка грамположительных бактерий плотно прилегает к цитоплазматической мембране, массивна, се толщина находится в пределах 20—100 нм. Для нее характерно наличие тейхоевых кислот, они связаны с пептидогликаном и представляют собой полимеры трехатомного спирта — глицерина или пятиатомного спирта — рибита, остатки которых соединены фосфодиэфирными связями. Тейхоевые кислоты связывают ионы магния и участвуют в транспорте их в клетку. В составе клеточной стенки грамположительных прокариот в небольших количествах также найдены полисахариды, белки и липиды.

Рис. 2. Схема строения прокариотической клетки:

1 — капсула; 2 — клеточная стенка; 3 — цитоплазматическая мембрана; 4 — нуклеоид; 5 — цитоплазма; 6 — хроматофоры; 7 — тилакоиды; 8 — мезосома; 9 — рибосомы; 10 — жгутики; 11— базальное тельце; 12 — пили; 13 — включение серы; 14 — капли жира; 15 — гранулы полифосфата; 16 — плазмида

Клеточная стенка грамотрицательных бактерий многослойна, толщина ее 14—17 нм. Внутренний слой — пептидогликан, который образует тонкую (2 нм) непрерывную сетку, окружающую клетку. Пептидогликан содержит только мезодиаминопимелиновую кислоту и не имеет лизина. Внешний слой клеточной стенки — наружная мембрана — состоит из фосфолипидов, липополисахарида, липопротеина и белков. В наружной мембране содержатся белки основы (матричные), они прочно связаны с пептидогликановым слоем. Одной из их функций является формирование в мембране гидрофильных пор, через которые осуществляется диффузия молекул с массой до 600, иногда 900. Матричные белки, кроме того, выполняют еще роль рецепторов для некоторых фагов. Липополисахарид (ЛПС) клеточных стенок грамотрицательных бактерий состоит из липида А и полисахарида. Токсичный для животных ЛПС получил название эндотоксина. Тейхоевые кислоты у грамотрицательных бактерий не обнаружены.

Структурные компоненты клеточной стенки грамотрицальных бактерий отграничены от цитоплазматической мембраны и разделены промежутком, называемым периплазмой или периплазматическим пространством.

Протопласты и сферопласты. Протопласты — формы прокариот, полностью лишенные клеточной стенки, образующиеся обычно у грамположительных бактерий. Сферопласты — бактерии с частично разрушенной клеточной стенкой. У них сохраняются элементы наружной мембраны. Наблюдаются у грамотрицательных бактерий и значительно реже у грамположительных. Образуются в результате разрушения пептидогликанового слоя литическими ферментами, например лизоцимом, или блокирования биосинтеза пептидогликана антибиотиком пенициллином и др. в среде с соответствующим осмотическим давлением.

Протопласты и сферопласты имеют сферическую или полусферическую форму и в 3—10 раз крупнее исходных клеток. В обычных условиях наступает осмотический лизис и они погибают. В условиях повышенного осмотического давления способны некоторое время переживать, расти и даже делиться. При снятии фактора, разрушающего пептидогликан, протопласты, как правило, отмирают, но могут превращаться в L-формы; сферопласты легко реверсируют в исходные бактерии, иногда трансформируются в L-формы или же гибнут.

L-Формы бактерий. Это фенотипические модификации, или мутанты, бактерий, частично или полностью утратившие способность синтезировать пептидогликан клеточной стенки. Таким образом, L-формы — бактерии, дефектные по клеточной стенке. Свое название они получили в связи с тем, что были выделены и описаны в институте Листера в Англии в 1935 г. Образуются при воздействии L-трансформирующих агентов — антибиотиков (пенициллина, полимиксина, бацитрацина, венкомицина, стрептомицина), аминокислот (глицина, метионина, лейцина и др.), фермента лизоцима, ультрафиолетовых и рентгеновых лучей. В отличие от протопластов и сферопластов L-формы обладают относительно высокой жизнеспособностью и выраженной способностью к репродукции. По морфологическим и культуральным свойствам они резко отличаются от исходных бактерий, что обусловлено утратой клеточной стенки и изменением метаболической активности.

L-Формы бактерий полиморфны. Встречаются элементарные тельца размером 0,2—1 мкм (минимальные репродуцирующие элементы), шары — 1—5, большие тела — 5—50, нити — до 4 мкм и более. Клетки L-форм имеют хорошо развитую систему внутрицитоплазматических мембран и миелиноподобные структуры. Вследствие дефекта клеточной стенки осмотически неустойчивы и их можно культивировать только на специальных средах с высоким осмотическим давлением; они проходят через бактериальные фильтры.

Различают стабильные и нестабильные L-формы бактерий. Первые полностью лишены ригидной клеточной стенки, что сближает их с протопластами; они крайне редко реверсируют в исходные бактериальные формы. Вторые могут обладать элементами клеточной стенки, в чем они проявляют сходство со сферопластами; в отсутствие фактора, вызвавшего их образование, реверсируют в исходные клетки.

Процесс образования L-форм получил название L-трансформации или L-индукции. Способностью к L-трансформации обладают практически все виды бактерий, в том числе и патогенные (возбудители бруцеллеза, туберкулеза, листерии и др.).

L-Формам придается большое значение в развитии хронических рецидивирующих инфекций, носительстве возбудителей, длительной персистенции их в организме. Доказана трансплацентарная инвазивность элементарных телец L-форм бактерий.

Инфекционный процесс, вызванный L-формами бактерий, характеризуется атипичностью, длительностью течения, тяжестью заболевания, трудно поддается химиотерапии.

Капсула — слизистый слой, расположенный над клеточной стенкой бактерии. Вещество капсулы четко отграничено от окружающей среды. В зависимости от толщины слоя и прочности соединения с бактериальной клеткой различают макрокапсулу, толщиной более 0,2 мкм, хорошо различимую в световом микроскопе, и микрокапсулу, толщиной менее 0,2 мкм, обнаруживаемую лишь при помощи электронного микроскопа или выявляемую химическими и иммунологическими методами. Макрокапсулу (истинную капсулу) образуют В. anlhracis, C1. perfringens, микрокапсулу — Escherichia coJi. Капсула не является обязательной структурой бактериальной клетки: потеря ее не приводит к гибели бактерии. Известны бескапсульные мутанты бактерий, например сибиреязвенный вакцинный штамм СТИ-1.

Вещество капсул состоит из высокогидрофильных мицелл, химический же состав их весьма разнообразен. Основные компоненты большинства капсул прокариот — гомо- или гетсрополисахариды (энтсробактерии и др.). У некоторых видов бацилл капсулы построены из полипептида. Так, в состав капсулы В. anthracis входит полипептид Д-глутаминовой кислоты (правовращающий изомер). В состав микрокапсулы микобактерий туберкулеза млекопитающих входят гликопептиды, представленные сложным эфиром трегалозы и миколовой кислоты (корд-фактор).

Синтез капсулы — сложный процесс и у различных прокариот имеет свои особенности; считают, что биополимеры капсулы синтезируются на наружной поверхности цитоплазматической мембраны и выделяются на поверхность клеточной стенки в определенных специфических ее участках.

Существуют бактерии, синтезирующие слизь, которая откладывается на поверхности клеточной стенки в виде бесструктурного слоя полисахаридной природы. Слизистое вещество, окружающее клетку, по толщине часто превосходит диаметр последней. У сапрофитной бактерии лейконостока наблюдается образование одной капсулы для многих особей. Такие скопления бактерий, заключенных в общую капсулу, называются зооглеями.

Капсула — полифункциональный органоид, выполняющий важную биологическую роль. Она является местом локализации капсульных антигенов, определяющих вирулентность, антигенную специфичность и иммуногенность бактерий. Утрата капсулы у патогенных бактерий резко снижает их вирулентность, например у бескапсульных штаммов бациллы антракса. Капсулы обеспечивают выживание бактерий, защищая их от механических повреждений, высыхания, заражения фагами, токсических веществ, а у патогенных форм — от действия защитных сил макроорганизма: инкапсулированные клетки плохо фагоцитируются. У некоторых видов бактерий, в том числе и патогенных, способствует прикреплению клеток к субстрату.

В ветеринарной микробиологии выявление капсулы используют в качестве дифференциального морфологического признака возбудителя при исследовании на сибирскую язву.

Для окрашивания капсул применяют специальные методы — Романовского — Гимзы, Гинса — Бурри, Ольта, Михина и др.

Микрокапсулу и слизистый слой определяют серологическими реакциями (РА), антигенные компоненты капсулы идентифицируют при помощи иммунофлюоресцентного метода (РИФ) и РДД.

Жгутики — органоиды движения бактерий, представленные тонкими, длинными, нитевидными структурами белковой природы. Их длина превышает бактериальную клетку в несколько раз и составляет 10—20 мкм, а у некоторых спирилл достигает 80— 90 мкм. Нить жгутика (фибрилла) — полный спиральный цилиндр диаметром 12—20 нм. У вибрионов и протея нить окружена футляром толщиной 35 нм.

Жгутик состоит из трех частей: спиральной нити, крюка и базального тельца. Крюк — изогнутый белковый цилиндр, выполняющий функцию гибкого связывающего звена между базальным тельцем и жесткой нитью жгутика. Базальное тельце — сложная структура, состоящая из центрального стержня (оси) и колец.

Рис. 3. Жгутики:

а — монотрихи; б — амфитрихи; в — лофотрихи; г — перитрихи

Жгутики не являются жизненно важными структурами бактериальной клетки: существуют фазовые вариации бактерий, когда в одной фазе развития клетки они имеются, у другой — отсутствуют. Так, у возбудителя столбняка в старых культурах преобладают клетки без жгутиков.

Количество жгутиков (от I до 50 и более) и места их локализации у бактерий разных видов неодинаковы, но стабильны для одного вида. В зависимости от этого выделяют следующие группы жгутиковых бактерий: моиотрихи — бактерии с одним полярно расположенным жгутиком; амфитрихи — бактерии с двумя полярно расположенными жгутиками или имеющие по пучку жгутиков на обоих концах; лофотрихи — бактерии, имеющие пучок жгутиков на одном конце клетки; перитрихи — бактерии с множеством жгутиков, расположенных по бокам клетки или на всей ее поверхности (рис. 3). Бактерии, не имеющие жгутиков, называют атрихиями.

Будучи органами движения, жгутики типичны для плавающих палочковидных и извитых форм бактерий и лишь в единичных случаях встречаются у кокков. Они обеспечивают эффективное движение в жидкой среде и более медленное перемещение по поверхности твердых субстратов. Скорость движения монотрихов и лофотрихов достигает 50 мкм/с, амфитрихи и перитрихи движутся медленнее и обычно за 1 с проходят расстояние, равное размерам их клетки.

Бактерии передвигаются беспорядочно, однако они способны к направленным формам движения — таксисам, которые определяются внешними стимулами. Реагируя на различные факторы окружающей среды, бактерии за короткое время локализуются в оптимальной зоне обитания. Таксис может быть положительным и отрицательным. Принято различать: хемотаксис, аэротаксис, фототаксис, магнототаксис. Хемотаксис вызывается разницей в концентрации химических веществ в среде, аэротаксис — кислорода, фототаксис — интенсивностью освещения, магнитотаксис определяется способностью микроорганизмов ориентироваться в магнитном поле.

Выявление подвижных жгутиковых форм бактерий имеет значение для их идентификации при лабораторной диагностике инфекционных болезней.

Пили (фимбрии, ворсинки) — прямые, тонкие, полые белковые цилиндры толщиной 3—25 нм и длиной до 12 мкм, отходящие от поверхности бактериальной клетки. Образованы специфическим белком — пилином, берут начало от цитоплазматической мембраны, встречаются у подвижных и неподвижных форм бактерий и видимы только в электронном микроскопе (рис. 4). На поверхности клетки может быть от 1—2, 50—400 и более пилей до нескольких тысяч.

Рис. 4. Пили

Существует два класса пилей: половые (секспили) и пили общего типа, которые чаще называют фимбриями. У одной и той же бактерии могут быть пили разной природы. Половые пили возникают на поверхности бактерий в процессе конъюгации и выполняют функцию органелл, через которые происходит передача генетического материала (ДНК) от донора к реципиенту.

Пили общего типа располагаются перитрихиально (кишечная палочка) или на полюсах (псевдомонады); одна бактерия их может содержать сотни. Они принимают участие в слипании бактерий в агломераты, прикреплении микробов к различным субстратам, в том числе к клеткам (адгезивная функция), в транспорте метаболитов, а также способствуют образованию пленок на поверхности жидких сред; вызывают агглютинацию эритроцитов.

Цитоплазматическая мебрана и ее производные. Цитоплазматическая мембрана (плазмолемма) — полупроницаемая липопротеидная структура бактериальных клеток, отделяющая цитоплазму от клеточной стенки. Она является обязательным полифункциональным компонентом клетки и составляет 8—15 % ее сухой массы. Разрушение цитоплазматической мембраны приводит к гибели бактериальной клетки. На ультратонких срезах в электронном микроскопе выявляется ее трехслойное строение — два ограничивающих осмиофильных слоя, толщиной 2—3 нм каждый, и один осмиофобный центральный слой толщиной 4—5 нм.

Цитоплазматическая мембрана в химическом отношении — белково-липидный комплекс, состоящий из 50—75 % белков и 15—50 % липидов. Основная часть мембранных липидов (70— 90 %) представлена фосфолипидами. Она построена из двух мономолекулярных белковых слоев, между которыми расположен липидный слой, состоящий из двух рядов правильно ориентированных молекул липидов.

Цитоплазматичсская мембрана служит осмотическим барьером клетки, контролирует поступление питательных веществ в клетку и выход продуктов метаболизма наружу, в ней содержатся субстратспецифические ферменты-пермеазы, осуществляющие активный избирательный перенос органических и неорганических молекул.

Ферменты цитоплазматической мембраны катализуют конечные этапы синтеза мембранных липидов, компонентов клеточной стенки, капсулы и экзоферментов; на мембране локализованы ферменты окислительного фосфорилирования и ферменты транспорта электронов, ответственные за синтез энергии.

В процессе роста клетки цитоплазмзтическая мембрана образует многочисленные инвагинаты, формирующие внутрицитоплазмати-ческие мембраны структуры. Локальные инвагинаты мембраны получили название мезосом. Эти структуры хорошо выражены у грамположительных бактерий, хуже — у грамотрицательных и плохо — у риккетсий и микоплазм.

Установлена связь мезосом с хромосомой бактерии, такие структуры называются нуклеоидосомеши. Интегрированные с нуклеоидом мезосомы принимают участие в кариокинезе и цитокинезе микробных клеток, обеспечивая распределение генома после окончания репликации ДНК и последующее расхождение дочерних хромосом. Мезосомы, как и цитоплазматическая мембрана, являются центрами дыхательной активности бактерий, поэтому их иногда называют аналогами митохондрий. Однако значение мезосом окончательно еще не выяснено. Они увеличивают рабочую поверхность мембран, возможно, выполняют только структурную функцию, производя разделение бактериальной клетки на относительно обособленные отсеки, что создает более благоприятные условия для протекания ферментативных процессов. У патогенных бактерий обеспечивают транспорт белковых молекул экзотоксинов.

Цитоплазма — содержимое бактериальной клетки, отграниченное цитоплазматической мембраной. Состоит из цитозоля — гомогенной фракции, включающей растворимые компоненты РНК, вещества субстрата, ферменты, продукты метаболизма, и структурных элементов — рибосом, внутрицитоплазматических мембран, включений и нуклеоида.

Рибосомы — органоиды, осуществляющие биосинтез белка. Состоят из белка и РНК, соединенных в комплекс водородными и гидрофобными связями. Бактериальные рибосомы — гранулы диаметром 15—20 нм, имеют константу седиментации 70S и образованы из двух рибонуклеопротеидных субъединиц: 30S и 50S. Одна бактериальная клетка может содержать от 5000—50 000 рибосом, посредством и-РНК они объединяются в полисомы-агрегаты, состоящие из 50—55 рибосом, обладающих высокой белоксинтезирующей активностью.

В цитоплазме бактерий выявляются различного типа включения. Они могут быть твердыми, жидкими и газообразными, с белковой мембраной или без нее и присутствовать непостоянно. Значительная часть их представляет собой запасные питательные вещества и продукты клеточного метаболизма. К запасным питательным веществам относятся: полисахариды, липиды, полифосфаты, отложения серы и др. Из включений полисахаридной природы чаще обнаруживаются гликоген и крахмалоподобное вещество гранулеза, которые служат источником углерода и энергетическим материалом. Липиды накапливаются в клетках в виде гранул и капелек жира, к ним относятся окруженные мембраной гранулы поли-/3-оксимас-ляной кислоты, резко преломляющие свет и хорошо различимые в световом микроскопе. Выявляются и бациллы антракса и аэробных спорообразующих сапрофитных бактерий. Микобактерии в качестве запасных веществ накапливают воски. В клетках некоторых кори-небактерий, спирилл и других содержатся гранулы волютина, образованные полифосфатами. Они характеризуются метахромазией: толуидиновый синий и метиленовый синий окрашивают их в фиолетово-красный цвет. Волютиновые гранулы играют роль фосфатных депо.

К включениям, окруженным мембраной, также относятся газовые вакуоли, или аэросомы, они снижают удельную массу клеток, встречаются у водных прокариот.

Нуклеоид — ядро у прокариот. Он состоит из одной замкнутой в кольцо двухспиральной нити ДНК длиной 1,1 —1,6 нм, которую рассматривают как одиночную бактериальную хромосому, или генофор.

Нуклеоид у прокариот не отграничен от остальной части клетки мембраной — у него отсутствует ядерная оболочка.

В состав структур нуклеоида входят РНК-полимераза, основные белки и отсутствуют гистоны; хромосома закрепляется на цитоплазматической мембране, а у грамположительных бактерий — на мезосомс. Бактериальная хромосома реплицируется поликонсервативным способом: родительская двойная спираль ДНК раскручивается и на матрице каждой полинуклеотидной цепи собирается новая комплементарная цепочка. Нуклеоид не имеет митотического аппарата, и расхождение дочерних ядер обеспечивается ростом цитоплазматической мембраны.

Бактериальное ядро — дифференцированная структура. В зависимости от стадии развития клетки нуклеоид может быть дискретным (прерывистым) и состоять из отдельных фрагментов. Это связано с тем, что деление бактериальной клетки во времени осуществляется после завершения цикла репликации молекулы ДНК и оформления дочерних хромосом.

В нуклеоиде сосредоточен основной объем генетической информации бактериальной клетки.

Кроме нуклеоида в клетках многих бактерий обнаружены внехромосомные генетические элементы — плазмиды, представленные небольшими кольцевыми молекулами ДНК, способными к автономной репликации.

Строение бактериальной клетки

Размеры - от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

Формы бактерий:
1 - кокки; 2 - бациллы; 3 - вибрионы; 4-7 - спириллы и спирохеты.

Строение бактериальной клетки:
1 - цитоплазматическая мемб­рана; 2 - клеточ­ная стенка; 3 - слизис­тая кап­сула; 4 - цито­плазма; 5 - хромо­сомная ДНК; 6 - рибосомы; 7 - мезо­сома; 8 - фото­синтети­ческие мемб­раны; 9 - вклю­чения; 10 - жгу­тики; 11 - пили.

Бактериальная клетка ограничена оболочкой. Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий - слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются. Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ. Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками. В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные. «Хромосомная» ДНК (5) - одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками. Зона, в которой расположена эта ДНК, называется нуклеоидом . Плазмиды - внехромосомные генетические элементы. Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов. Количество плазмид может быть различным. Наиболее изучены плазмиды, несущие информацию об устойчивости к лекарственным препаратам (R-фактор), принимающие участие в половом процессе (F-фактор). Плазмида, способная объединяться с хромосомой, называется эписомой .

В бактериальной клетке отсутствуют все мембранные органоиды, характерные для эукариотической клетки (митохондрии, пластиды, ЭПС, аппарат Гольджи, лизосомы).

В цитоплазме бактерий находятся рибосомы 70S-типа (6) и включения (9). Как правило, рибосомы собраны в полисомы. Каждая рибосома состоит из малой (30S) и большой субъединиц (50S). Функция рибосом: сборка полипептидной цепочки. Включения могут быть представлены глыбками крахмала, гликогена, волютина, липидными каплями.

У многих бактерий имеются жгутики (10) и пили (фимбрии) (11). Жгутики не ограничены мембраной, имеют волнистую форму и состоят из сферических субъединиц белка флагеллина. Эти субъединицы расположены по спирали и образуют полый цилиндр диаметром 10–20 нм. Жгутик прокариот по своей структуре напоминает одну из микротрубочек эукариотического жгутика. Количество и расположение жгутиков может быть различным. Пили - прямые нитевидные структуры на поверхности бактерий. Они тоньше и короче жгутиков. Представляют собой короткие полые цилиндры из белка пилина. Пили служат для прикрепления бактерий к субстрату и друг к другу. Во время конъюгации образуются особые F-пили, по которым осуществляется передача генетического материала от одной бактериальной клетки к другой.

Яндекс.ДиректВсе объявления

Спорообразование у бактерий - способ переживания неблагоприятных условий. Споры формируются обычно по одной внутри «материнской клетки» и называются эндоспорами. Споры обладают высокой устойчивостью к радиации, экстремальным температурам, высушиванию и другим факторам, вызывающим гибель вегетативных клеток.

Размножение. Бактерии размножаются бесполым способом - делением «материнской клетки» надвое. Перед делением происходит репликация ДНК.

Редко у бактерий наблюдается половой процесс, при котором происходит рекомбинация генетического материала. Следует подчеркнуть, что у бактерий никогда не образуются гаметы, не происходит слияние содержимого клеток, а имеет место передача ДНК от клетки-донора к клетке-реципиенту. Различают три способа передачи ДНК: конъюгация, трансформация, трансдукция.

Конъюгация - однонаправленный перенос F-плазмиды от клетки-донора в клетку-реципиента, контактирующих друг с другом. При этом бактерии соединяются друг с другом особыми F-пилями (F-фимбриями), по каналам которых фрагменты ДНК и переносятся. Конъюгацию можно разбить на следующие этапы: 1) раскручивание F-плазмиды, 2) проникновение одной из цепей F-плазмиды в клетку-реципиента через F-пилю, 3) синтез комплементарной цепи на матрице одноцепочечной ДНК (происходит как в клетке-доноре (F +), так и в клетке-реципиенте (F -)).

Трансформация - однонаправленный перенос фрагментов ДНК от клетки-донора к клетке-реципиенту, не контактирующих друг с другом. При этом клетка-донор или «выделяет» из себя небольшой фрагмент ДНК, или ДНК попадает в окружающую среду после гибели этой клетки. В любом случае ДНК активно поглощается клеткой-реципиентом и встраивается в собственную «хромосому».

Трансдукция - перенос фрагмента ДНК от клетки-донора к клетке-реципиенту с помощью бактериофагов.

Вирусы

Вирусы состоят из нуклеиновой кислоты (ДНК или РНК) и белков, образующих оболочку вокруг этой нуклеиновой кислоты, т.е. представляют собой нуклеопротеидный комплекс. В состав некоторых вирусов входят липиды и углеводы. Вирусы содержат всегда один тип нуклеиновой кислоты - либо ДНК, либо РНК. Причем каждая из нуклеиновых кислот может быть как одноцепочечной, так и двухцепочечной, как линейной, так и кольцевой.

Размеры вирусов - 10–300 нм. Форма вирусов: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Капсид - оболочка вируса, образована белковыми субъединицами, уложенными определенным образом. Капсид защищает нуклеиновую кислоту вируса от различных воздействий, обеспечивает осаждение вируса на поверхности клетки-хозяина. Суперкапсид характерен для сложноорганизованных вирусов (ВИЧ, вирусы гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина и представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Если вирус находится внутри клетки-хозяина, то он существует в форме нуклеиновой кислоты. Если вирус находится вне клетки-хозяина, то он представляет собой нуклеопротеидный комплекс, и эта свободная форма существования называется вирионом . Вирусы обладают высокой специфичностью, т.е. они могут использовать для своей жизнедеятельности строго определенный круг хозяев.