Синтезированные белки должны "созреть". Фолдинг белка. Шапероны Фолдинг белка биохимия

22.10.2023

Фолдинг – это процесс укладки вытянутой полипептидной цепи в правильную трехмерную пространственную структуру. Для обеспечения фолдинга используется группа вспомогательных белков под названием шапероны (chaperon, франц. – спутник, нянька). Они предотвращают взаимодействие новосинтезированных белков друг с другом, изолируют гидрофобные участки белков от цитоплазмы и "убирают" их внутрь молекулы, правильно располагают белковые домены. Шапероны представлены семействами, состоящими из гомологичных по строению и функциям белков, которые отличаются по характеру экспрессии и присутствию в разных компартментах клетки.

В целом шапероны способствуют переходу структуры белков от первичного уровня до третичного и четвертичного, но они не входят в состав конечной белковой структуры.

Новосинтезированные белки после выхода с рибосом для правильного функционирования должны укладываться в стабильные трехмерные структуры и оставаться такими на протяжении всей функциональной жизни клетки. Поддержание контроля качества структуры белка и осуществляется шаперонами, катализирующими укладку полипептидов. Сборка полипротеинов и укладка мультибелковых комплексов также осуществляется шаперонами. Шапероны связываются с гидрофобными участками неправильно уложенных белков, помогают им свернуться и достигнуть стабильной нативной структуры и, тем самым, предотвращают их включение в нерастворимые и нефункциональные агрегаты. В течение своей функциональной жизни белок может подвергаться различным стрессам и денатурации. Такие частично денатурированные белки могут стать, во-первых, мишенью протеаз, во-вторых, агрегировать и, в-третьих, укладываться в нативную структуру с помощью шаперонов. Баланс и эффективность, с которой происходят эти три процесса, определяются соотношением компонентов, участвующих в этих реакциях.

Транспорт многих белков из одного компартмента в другой.

Участие в сигнальных путях. Например, присутствие Hsp70 необходимо для активации фосфатазы, которая путем дефосфорилирования ингибирует протеинкиназу JNK , компонент сигнала стресс-индуцированного апоптоза, т.е. Hsp70 является частью антиапоптозного сигнального пути.

Регуляция функций различных молекул. Например, стероидный рецептор, находящийся в цитоплазме, связан с Hsp90; лиганд, попадающий в цитоплазму, присоединяется к рецептору и вытесняет шаперон из комплекса. После этого комплекс рецептор-лиганд приобретает способность связываться с ДНК, мигрирует в ядро и осуществляет функцию транскрипционного фактора.

При нарушении функции шаперонов и отсутствии фолдинга в клетке формируются белковые отложения – развивается амилоидоз. Амилоид представляет собой гликопротеид, основным компонентом которого являются фибриллярные белки. Они образуют фибриллы, имеющие характерную улырамикроскопическую структуру. Фибриллярные белки амилоида неоднородны. Насчитывают около 15 вариантов амилоидоза.


Прио́ны

Складывается впечатление, что фолдинг с участием фолдаз и шаперонов приводит к правильной. Наиболее оптимальной в энергетическом и функциональном отношениях структкре. Однако это не так. Существует группа тяжелых неврологических болезней, обусловленных неправильным фолдингом одного, вполне определенного белка.

Известно, что PrP может существовать в двух конформациях - «здоровой» - PrPC, которую он имеет в нормальных клетках (C - от англ. cellular - «клеточный»), в которой преобладают альфа-спирали, и «патологической» - PrPSc, собственно прионной (Sc- от scrapie), для которой характерно наличие большого количества бета-тяжей.

Прионный белок, обладающий аномальной трёхмерной структурой, способен прямо катализировать структурное превращение гомологичного ему нормального клеточного белка в себе подобный (прионный), присоединяясь к белку-мишени и изменяя его конформацию. Как правило, прионное состояние белка характеризуется переходом α-спиралей белка в β-слои.

При попадании в здоровую клетку, PrPSc катализирует переход клеточного PrPC в прионную конформацию. Накопление прионного белка сопровождается его агрегацией, образованием высокоупорядоченных фибрил (амилоидов), что в конце концов приводит к гибели клетки. Высвободившийся прион, по-видимому, оказывается способен проникать в соседние клетки, также вызывая их гибель.

Функции белка PrPC в здоровой клетке - поддержание качества миелиновой оболочки, которая в отсутствие этого белка постепенно истончается. В норме белок PrPC ассоциирован с клеточной мембраной, гликозилирован остатком сиаловой кислоты. Он может совершать циклические переходы внутрь клетки и обратно на поверхность в ходе эндо- и экзоцитоза.

До конца механизм спонтанного возникновения прионных инфекций не ясен. Считается (но ещё не полностью доказано), что прионы образуются в результате ошибок в биосинтезе белков. Мутации генов, кодирующих прионный белок (PrP), ошибки трансляции, процессы протеолиза - считаются главными кандидатами на механизм возникновения прионов.

Таким образом, прио́ны - особый класс инфекционных агентов, чисто белковых, не содержащих нуклеиновых кислот, вызывающих тяжёлые заболевания центральной нервной системы у человека и ряда высших животных (т. н. «медленные инфекции»).

Есть данные, дающие основание считать, что прионы являются не только инфекционными агентами, но и имеют функции в нормальных биопроцессах. Так, например, существует гипотеза, что через прионы осуществляется механизм генетически обусловленного стохастического старения.

Прионы - единственные известные инфекционные агенты, размножение которых происходит без участия нуклеиновых кислот.

Во второй половине XX века врачи столкнулись с необычным заболеванием человека - постепенно прогрессирующим разрушением головного мозга, происходящим в результате гибели нервных клеток. Это заболевание получило название губчатой энцефалопатии. Похожие симптомы были известны давно, но наблюдались они не у человека, а у животных (скрейпи овец), и долгое время между ними не находили достаточной обоснованной связи.

Новый интерес к их изучению возник в 1996 г., когда в Великобритании появилась новая форма заболевания, обозначаемая как «новый вариант болезни Крейтцфельдта-Якоба.

Важным событием было распространение «коровьего бешенства» в Великобритании, эпидемия которого была сначала в 1992-1993 гг, а потом и в 2001 г охватила несколько европейских государств, но тем не менее экспорт мяса во многие страны не был прекращён. Заболевание связывают с использованием «прионизированной» костной муки в кормах и премиксах, изготовленной из туш павших или заболевших животных, возможно, и не имевших явных признаков заболевания.

Пути переноса причинного фактора болезни, механизмы проникновения прионов в организм и патогенез заболевания изучены пока недостаточно.

Прионы млекопитающих - возбудители губчатой энцефалопатии

Скрейпи овцы и козы Прион скрейпи OvPrPSc

Трансмиссивная энцефаломиопатия норок (ТЭН) Прион ТЭН и MkPrPSc

Chronic wasting disease (CWD) олени и лоси CWD прион MDePrPSc

Губчатая энцефалопатия крупного рогатого скота (ГЭКРС) Коровы Прион ГЭКРС BovPrPSc

Губчатая энцефалопатия кошачьих (ГЭК) Кошки Прион ГЭК FePrPSc

Губчатая энцефалопатия экзотических копытных (EUE) Антилопы и большой куду EUE прион NyaPrPSc

Куру Люди Прион куру HuPrPSc

Болезнь Крейцфельда-Якоба (БКЯ) Люди Прион БКЯ HuPrPSc

(New) Variant Creutzfeldt-Jakob disease (vCJD, nvCJD) Люди vCJD прион HuPrPSc

Синдром Герстманна-Штройслера-Шейнкера (GSS) Люди GSS прион HuPrPSc

Фатальная семейная бессонница (ФСБ) Люди Прион ФСБ HuPrPS

Человек может заразиться прионами, содержащимися в пище, так как они не разрушаются ферментами пищеварительного тракта. Так как стенками кишечника они не адсорбируются, то могут проникать в кровь только через поврежденные ткани. В конечном итоге они попадают в центральную нервную систему. Так переносится новый вариант болезни Крейтцфельдта-Якоба (nvCJD), которой люди заражаются после употребления в пищу говядины, содержащей нервную ткань из голов скота, больных бычьей губчатой энцефалопатией (BSE, коровье бешенство).

На практике доказана возможность прионов заражать организм мышей воздушно-капельным путем.

Прионы могут проникать в тело и парентеральным путем. Были описаны случаи заражения при внутримышечном введении препаратов, изготовленных из человеческих гипофизов (главным образом гормоны роста для лечения карликовости), а также заражение мозга инструментами при нейрохирургических операциях, поскольку прионы устойчивы к применяемым в настоящее время термическим и химическим методам стерилизации. Эта форма болезни Крейтцфельдта-Якоба обозначается как ятрогенная (1CJD).

При определённых, неизвестных условиях, в организме человека может произойти спонтанная трансформация прионного белка в прион. Так возникает так называемая спорадическая болезнь Крейтцфельдта-Якоба (sCJD), впервые описанная в 1920 г. независимо друг от друга Гансом Герхардом Крейтцфельдтом и Альфонсом Марией Якобом. Предполагается, что спонтанное возникновение этой болезни связано с фактом, что в норме в человеческом теле постоянно возникает небольшое количество прионов, которые эффективно ликвидируются клеточным Аппаратом Гольджи. Нарушение этой способности «самоочищения» клеток может привести к повышению уровня прионов выше допустимой границы нормы и к их дальнейшему неконтролируемому распространению. Причиной возникновения спорадической болезни Крейтцфельдта-Якоба согласно этой теории является нарушение функции Аппарата Гольджи в клетках.

Особую группу прионовых заболеваний представляют собой наследственные (врожденные) болезни, вызванные мутацией гена прионового белка, который делает возникший прионовый белок более подверженным спонтанному изменению пространственной конфигурации и превращения их в прионы. К этой группе наследственных заболеваний относится и наследственная форма болезни Крейтцфельдта-Якоба (fCJD), которая наблюдается в ряде стран мира. При прионовой патологии наивысшая концентрация прионов обнаружена в нервной ткани заражённых людей. Прионы встречаются в лимфатической ткани. Наличие прионов в биологических жидкостях, включая слюну, пока не было однозначно подтверждено. Если представление о постоянном возникновении небольшого количества прионов верно, то можно предположить, что новые, более чувствительные методы диагностики откроют это количество прионов, разбросанное по различным тканям. В данном случае, однако, речь пойдёт о «физиологическом» уровне прионов, которые не представляют собой никакой угрозы для человека.




Вопрос - каким образом белки так быстро (буквально за наносекунды) принимают необходимую третичную структуру. Так, достаточно простой белок, состоящий из ста аминокислот, может принять форм. Если он даже будет изменять эти формы со скоростью 100 миллиардов в секунду, для того чтобы достигнуть необходимой, у него уйдёт на это вечность. При этом скорость, с которой белки свёртываются, чрезвычайно чувствительна к температуре. Совсем недавно китайские учёные Ляофу Луо и Цзунь Лу предложили объяснять этот процесс его квантовой природой. Это открытие для биологии настолько же важно, как открытие законов термодинамики в физике.


В фолдинге участвуют белки- шапероны. Большинство только что синтезированных белков может сворачиваться при отсутствии шаперонов Шапероны класс белков, главная функция которых состоит в восстановлении правильной третичной структуры повреждённых белков, а также образование и диссоциация белковых комплексов.


Многие шапероны являются белками теплового шока, то есть белками, экспрессия которых начинается в ответ на рост температуры или другие клеточные стрессы Белки теплового шока – Hsp (heat shock protein). Hsp60, Hsp70 Шапероны участвуют в фолдинге только что созданных белков в тот момент, когда они «вытягиваются» из рибосомы. Другие шапероны участвуют в исправлении потенциального вреда, который возникает из-за неправильного сворачивания белков


Фолдинг белков происходит в эндоплазматическом ретикулуме В нём содержатся необходимые для фолдинга шапероны и ферменты Кроме того ЭПС обладает уникальным окислительным потенциалом, облегчающим образование дисульфидных связей в процессе укладки белка. Из эндоплазматического ретикулума белки с корректной укладкой отправляются к месту назначения. Белки с нарушенной укладкой подвергаются ассоциированной с эндоплазматической сетью деградации




Убиквити́н (от англ. ubiquitous вездесущий) небольшой консервативный белок Убиквитинилирование это посттрансляционное присоединение ферментами убиквитин-лигазами одного или нескольких молекул убиквитина с помощью ковалентной связи к ε-NH 2 группе остатков Лиз белка-мишени. Присоединение убиквитина влияет на внутриклеточную локализацию и функцию белков. Самым первым открытием стала деградация белков, помеченных мультиубиквитиновыми цепями, с помощью 26S- протеасомы. Система убиквитинилирования вовлечена в такие важные процессы, как пролиферация, развитие и дифференцировка клеток, реакция на стресс и патогены, репарация ДНК.


При помощи убиквитин-лигаз (E1, E2, E3) цепь из 4 или более молекул убиквитинов присоединяется к одному или более остатку лизина на целевом белке. Такой убиквитинилированный белок транспортируется к протеасоме, где цепь убиквитинов удаляется, позволяя белку развернуться (unfold) и загрузиться во внутрь протеасомы, где он деградирует с помощью трёх треониновых протеаз.


Протеасома (от англ. protease протеиназа и лат. soma тело) мультисубъединичная протеаза, присутствующая в клетках эукариот, архей и некоторых бактерий. У эукариот протеасомы присутствуют в цитозоле и ядрах Протеасомы выделяют в виде индивидуальных частиц с коэффициентами седиментации 20S и 26S В человеческой клетке насчитывается около 30,000 протеасом Они неспецифично расщепляют белки до пептидов длинной 7-9 аминокислот.

  • 2. Методы очистки белков
  • 3. Очистка белков от низкомолекулярных примесей
  • 11.Конформационная лабильность белков. Денатурация, признаки и факторы ее вызывающие. Защита от денатурации специализированными белками теплового шока (шаперонами).
  • 12. Принципы классификации белков. Классификация по составу и биологическим функциям, примеры представителей отдельных классов.
  • 13. Иммуноглобулины, классы иммуноглобулинов, особенности строения и функционирования.
  • 14. Ферменты, определение. Особенности ферментативного катализа. Специфичность действия ферментов, виды. Классификация и номенклатура ферментов, примеры.
  • 1. Оксидоредукпшзы
  • 2.Трансферты
  • V. Механизм действия ферментов
  • 1. Формирование фермент-субстратного комплекса
  • 3. Роль активного центра в ферментативном катализе
  • 1. Кислотно-основной катализ
  • 2. Ковалентный катализ
  • 16. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от температуры, рН среды, концентрации фермента и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 17. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
  • 1. Роль металлов в присоединении субстрата в активном центре фермента
  • 2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
  • 3. Роль металлов в ферментативном катализе
  • 4. Роль металлов в регуляции активности ферментов
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • 18. Ингибирование ферментов: обратимое и необратимое; конкурентное и неконкурентное. Лекарственные препараты как ингибиторы ферментов.
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические ингибиторы
  • 2. Необратимые ингибиторы ферментов как лекарственные препараты
  • 20. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования.
  • 21. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции каталитической активности ферментов.
  • 22. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
  • 23. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 24. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
  • 25. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Азотистые основания, входящие в структуру нуклеиновых кислот – пуриновые и пиримидиновые. Нуклеотиды, содержащие рибозу и дезоксирибозу. Структура. Номенклатура.
  • 28. Первичная структура нуклеиновых кислот. Днк и рнк–черты сходства и различия состава, локализации в клетке, функции.
  • 29. Вторичная структура днк (модель Уотсона и Крика). Связи, стабилизирующие вторичную структуру днк. Комплементарность. Правило Чаргаффа. Полярность. Антипараллельность.
  • 30. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.
  • 32. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 33. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 34. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 35. Транскрипция Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса. Элонгация, терминация транскрипции.
  • 36. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 37. Регуляция транскрипции у прокариот. Теория оперона, регуляция по типу индукции и репрессии (примеры).
  • 1. Теория оперона
  • 2. Индукция синтеза белков. Lac-оперон
  • 3. Репрессия синтеза белков. Триптофановый и гистидиновый опероны
  • 39. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 41. Фолдинг белков. Ферменты. Роль шаперонов в фолдинге белка. Фолдинг белковой молекулы с помощью шаперониновой системы. Болезни, связанные с нарушением фолдинга белка – прионовые болезни.
  • 42. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 43. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 44. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 45. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 47. Витамины. Классификация, номенклатура. Провитамины. Гипо-, гипер- и авитаминозы, причины возникновения. Витаминзависимые и витаминрезистентные состояния.
  • 48. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 3. Жидкостностъ мембран
  • 1. Структура и свойства липидов мембран
  • 51. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • Мембранные рецепторы
  • 3.Эндергонические и экзергонические реакции
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Строение атф-синтазы и синтез атф
  • 3.Коэффициент окислительного фосфорилирования
  • 4.Дыхательный контроль
  • 56. Образование активных форм кислорода (синглетный кислород, пероксид водо-рода, гидроксильный радикал, пероксинитрил). Место образования, схемы реакций, их физиологическая роль.
  • 57. Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1) Инициация: образование свободного радикала (l )
  • 2) Развитие цепи:
  • 3) Разрушение структуры липидов
  • 1. Строение пируватдегидрогеназного комплекса
  • 2. Окислительное декарбоксилирование пирувата
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 59. Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 1. Последовательность реакций цитратного цикла
  • 60. Цикл лимонной кислоты, схема процесса. Связь цикла с целью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
  • 61. Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания.
  • Методы определение глюкозы в крови
  • 63. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Физиологическое значение аэробного гликолиза. Использование глюкозы для синтеза жиров.
  • 1. Этапы аэробного гликолиза
  • 64. Анаэробный гликолиз. Реакция гликолитической оксидоредукции; субстратное фосфорилирование. Распространение и физиологическое значение анаэробного распада глюкозы.
  • 1. Реакции анаэробного гликолиза
  • 66. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена.
  • 68. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы.
  • 2. Агликогенозы
  • 69. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..
  • 72. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метаболизма жира.
  • 73. Распад жирных кислот в клетке. Активация и перенос жирных кислот в митохондрии. Β-окисление жирных кислот, энергетический эффект.
  • 74. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 2. Регуляция синтеза жирных кислот
  • 76. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • Фонд холестерола в организме, пути его использования и выведения.
  • 1. Механизм реакции
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 3. Биологическое значение трансаминирования
  • 4. Диагностическое значение определения аминотрансфераз в клинической практике
  • 1. Окислительное дезаминирование
  • 81. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 3. Неокислительное дезамитровате
  • 110. Молекулярная структура миофибрилл. Структура и функция основных белков миофибрилл миозина, актина, тропомиозина, тропонина. Основные белки миофибрилл
  • 111. Биохимические механизмы мышечного сокращения и расслабления. Роль ионов кальция и других ионов в регуляции мышечного сокращения.
  • В процессе синтеза полипептидных цепей, транспорта их через мембраны, при сборке олигомерных белков возникают промежуточные нестабильные конформации, склонные к агрегации. На вновь синтезированном полипептиде имеется множество гидрофобных радикалов, которые в трёхмерной структуре спрятаны внутри молекулы. Поэтому на время формирования нативной конформации реакционно-способные аминокислотные остатки одних белков должны быть отделены от таких же групп других белков.

    Во всех известных организмах от прокариотов до высших эукариотов обнаружены белки, способные связываться с белками, находящимися в неустойчивом, склонном к агрегации состоянии. Они способны стабилизировать их конформацию, обеспечивая фолдинг белков. Эти белки получили название "шапероны".

    1. Классификации шаперонов (Ш)

    В соответствии с молекулярной массой все шапероны можно разделить на 6 основных групп:

      высокомолекулярные, с молекулярной массой от 100 до 110 кД;

      Ш-90 - с молекулярной массой от 83 до 90 кД;

      Ш-70 - с молекулярной массой от 66 до 78 кД;

      низкомолекулярные шапероны с молекулярной массой от 15 до 30 кД.

    Среди шаперонов различают: конститутивные белки (высокий базальный синтез которых не зависит от стрессовых воздействий на клетки организма), и индуцибельные, синтез которых в нормальных условиях идёт слабо, но при стрессовых воздействиях на клетку резко увеличивается. Индуцибельные шапероны относят к "белкам теплового шока", быстрый синтез которых отмечают практически во всех клетках, которые подвергаются любым стрессовым воздействиям. Название "белки теплового шока" возникло в результате того, что впервые эти белки были обнаружены в клетках, которые подвергались воздействию высокой температуры.

    2. Роль шаперонов в фолдинге белков

    При синтезе белков N-концевая область полипептида синтезируется раньше, чем С-концевая область. Для формирования конформации белка нужна его полная аминокислотная последовательность. Поэтому в период синтеза белка на рибосоме защиту реакционно-способных радикалов (особенно гидрофобных) осуществляют Ш-70.

    Ш-70 - высококонсервативный класс белков, который присутствует во всех отделах клетки: цитоплазме, ядре, ЭР, митохондриях. В области карбоксильного конца единственной полипептидной цепи шаперонов есть участок, образованный радикалами аминокислот в форме бороздки. Он способен взаимодействовать с участками белковых молекул и развёрнутых полипептидных цепей длиной в 7-9 аминокислот, обогащённых гидрофобными радикалами. В синтезирующейся полипептидной цепи такие участки встречают примерно через каждые 16 аминокислот.

    Фолдинг многих высокомолекулярных белков, имеющих сложную конформацию (например, доменное строение), осуществляется в специальном пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомернoго комплекса, состоящего из 14 субъединиц (рис. 1-23).

    Ш-60 образуют 2 кольца, каждое из которых состоит из 7 субъединиц, соединённых друг с другом. Субъединица Ш-60 состоит из 3 доменов: апикального (верхушечного), промежуточного и экваториального. Верхушечный домен имеет ряд гидрофобных остатков, обращённых в полость кольца, сформированного субъединицами. Экваториальный домен имеет участок связывания с АТФ и обладает АТФ-азной активностью, т.е. способен гидролизовать АТФ до АДФ и Н 3 РО 4 .

    Шапероновый комплекс имеет высокое сродство к белкам, на поверхности которых есть элементы, характерные для несвёрнутых молекул (прежде всего участки, обогащённые гидрофобными радикалами). Попадая в полость шаперонового комплекса, белок связывается с гидрофобными радикалами апикальных участков Ш-60. В специфической среде этой полости, в изоляции от других молекул клетки происходит перебор возможных конформации белка, пока не будет найдена единственная, энергетически наиболее выгодная конформация.

    Высвобождение белка со сформированной нативной конформацией сопровождается гидролизом АТФ в экваториальном домене. Если белок не приобрёл нативной конформации, то он вступает в повторную связь с шапероновым комплексом. Такой шаперонзависимый фолдинг белков требует затрат большого количества энергии.

    Таким образом, синтез и фолдинг белков протекают при участии разных групп шаперонов, препятствующих нежелательным взаимодействиям белков с другими молекулами клетки и сопровождающих их до окончательного формирования нативной структуры.

    4. Болезни, связанные с нарушением фолдинга белков

    Расчёты показали, что лишь небольшая часть теоретически возможных вариантов полипептидных цепей может принимать одну стабильную пространственную структуру. Большинство же таких белков может принимать множество конформаций с примерно одинаковой энергией Гиббса, но с различными свойствами. Первичная структура большинства известных белков, отобранных эволюцией, обеспечивает исключительную стабильность одной конформаций.

    Однако некоторые растворимые в воде белки при изменении условий могут приобретать конформацию плохо растворимых, способных к агрегации молекул, образующих в клетках фибриллярные отложения, именуемые амилоидом (от лат. amylum - крахмал). Так же как и крахмал, амилоидные отложения выявляют при окраске ткани йодом. Это может происходить:

      при гиперпродукции некоторых белков, в результате чего увеличивается их концентрация в клетке;

      при попадании в клетки или образовании в них белков, способных влиять на конформацию других молекул белка;

      при активации протеолиза нормальных белков организма, с образованием нерастворимых, склонных к агрегации фрагментов;

      в результате точечных мутаций в структуре белка.

    В результате отложения амилоида в органах и тканях нарушаются структура и функция клеток, наблюдают их дегенеративные изменения и разрастание соединительнотканных или глиальных клеток. Развиваются болезни, называемые амилоидрзами. Для каждого вида амилоидоза характерен определённый тип амилоида. В настоящее время описано более 15 таких болезней.

    Болезнь Альцхаймера

    Болезнь Альцхаймера - наиболее часто отмечаемый?-амилоидоз нервной системы, как правило, поражающий лиц преклонного возраста и характеризующийся прогрессирующим расстройством памяти и полной деградацией личности. В ткани мозга откладывается?-амилоид - белок, образующий нерастворимые фибриллы, нарушающие структуру и функции нервных клеток. ?-амилоид - продукт изменения конформаций нормального белка организма человека. Он образуется из более крупного предшественника частичным протеолизом и синтезируется во многих тканях. ?-Амилоид, в отличие от своего нормального предшественника, содержащего много?-спиральных участков, имеет вторичную?-складчатую структуру, агрегирует с образованием нерастворимых фибрилл, устойчив к действию протеолитических ферментов.

    Причины нарушения фолдинга нативных белков в ткани мозга ещё предстоит выяснить. Возможно, с возрастом уменьшается синтез шаперонов, способных участвовать в формировании и поддержании нативной конформаций белков, или увеличивается активность протеаз, что приводит к увеличению концентрации белков, склонных изменять конформацию.

    Прионовые болезни

    Прионы - особый класс белков, обладающих инфекционными свойствами. Попадая в организм человека или спонтанно возникая в нём, они способны вызывать тяжёлые неизлечимые заболевания ЦНС, называемые прионовыми болезнями. Название "прионы" происходит от аббревиатуры английской фразы proteinaceous infectious particle - белковая инфекционная частица.

    Прионовый белок кодируется тем же тленом, что и его нормальный аналог, т.е. они имеют идентичную первичную структуру. Однако два белка обладают различной конформацией: прионовый белок характеризуется высоким содержанием?-слоёв, в то время как нормальный белок имеет много?-спиральных участков. Кроме того, прионовый белок обладает устойчивостью к действию протеаз и, попадая в ткань мозга или образуясь там спонтанно, способствует превращению нормального белка в прионовый в результате межбелковых взаимодействий. Образуется так называемое "ядро полимеризации", состоящее из агрегированных прионовых белков, к которому способны присоединяться новые молекулы нормального белка. В результате в их пространственной структуре происходят конформационные перестройки, характерные для прионовых белков.

    Известны случаи наследственных форм прионовых болезней, вызванных мутациями в структуре данного белка. Однако возможно и заражение человека прионовыми белками, в результате чего возникает заболевание, приводящее к гибели больного. Так, куру - прионовая болезнь аборигенов Новой Гвинеи, эпидемический характер которой связан с традиционным каннибализмом в этих племенах и передачей инфекционного белка от одной особи к другой. В связи с изменением образа их жизни данное заболевание практически исчезло.

  • Статья на конкурс «био/мол/текст»: Белки - главные биологические молекулы. Они выполняют множество разнообразных функций: каталитическую, структурную, транспортную, рецепторную и многие другие. Даже всем известная ДНК играет лишь роль «флешки», храня информацию о белках, в то время как белки - сами «файлы». Жизнь на Земле по праву можно назвать белковой. Но так ли много мы знаем о структуре и функционировании этих веществ? До сих пор тайной остается фолдинг белка - процесс пространственной упаковки белковой молекулы, принятия белком строго определенной формы, в которой он выполняет свои функции.

    Генеральным спонсором конкурса, согласно нашему краудфандингу , стал предприниматель Константин Синюшин , за что ему огромный человеческий респект!

    Спонсором приза зрительских симпатий выступила фирма «Атлас ».

    Спонсор публикации этой статьи - Лев Макаров.

    Белки - биополимеры, которые можно сравнить с бусами, где бусинами являются аминокислоты, соединенные между собой пептидными связями (отсюда другое название белков - полипептиды). В клетке белки синтезируются на специальных молекулярных машинах - рибосомах . Выходя из рибосомы, полипептидная цепь сворачивается, и белок принимает определенную конформацию, то есть пространственную структуру (рис. 1). Жизненно важно, чтобы белок присутствовал в организме в определенной форме, то есть конформация должна быть «правильной» (нативной). Процесс сворачивания белка и называется фолдингом (от англ. folding - сворачивание, укладка; отметим, что термин «фолдинг» применим не только к белкам). Самое интересное, что информация о трехмерной структуре «заложена» в самой последовательности аминокислот. Таким образом, белку, чтобы принять нативную структуру, требуется лишь «знать», в какой последовательности и какие аминокислотные остатки в нем присутствуют. Впервые это было доказано в 1961 году Кристианом Анфинсеном на примере бычьей панкреатической рибонуклеазы (рис. 2). Следует сказать, что, помимо белков, чья пространственная структура строго определяется аминокислотной последовательностью, существуют так называемые неструктурированные белки (intrinsically unfolded proteins, IDPs ): некоторые фрагменты таких молекул, а иногда и целые молекулы, способны принимать сразу множество возможных конформаций, причем все они энергетически «равноценны», а такие белки довольно часто встречаются в природе и выполняют важные функции . Существует и другой тип фолдинга, происходящий с помощью специальных белков - шаперонов , но о нем чуть позже.

    Рисунок 1. Котрансляционный фолдинг маленького α-спирального домена. Сворачивание полипептидной цепи многих белков начинается уже в рибосоме во время трансляции белка (то есть его синтеза). Созревающий белок выходит из рибосомы через специальный туннель (на рисунке - затемненная область в большой субъединице), который является важным фактором сворачивания цепи , причем С-конец цепи (содержащий карбоксильную группу) фиксирован в рибосоме, а N-конец (содержащий аминогруппу) «продвигается» к выходу и «свисает» из него, когда в туннеле накапливается 30–40 аминокислотных остатков . В туннеле могут формироваться компактизированные незрелые структуры, α-спирали, β-шпильки и маленькие α-спиральные домены . Котрансляционный фолдинг проходит в две стадии: сначала несвернутая цепь (U, unfolded ) переходит в компактизированное состояние (C, compacted ), которая затем приобретает нативную структуру (N, native ).

    Рисунок 2. Бычья панкреатическая рибонуклеаза и ученые, которые ее изучали. а - Бычья панкреатическая рибонуклеаза. За исследование структуры этого фермента Анфинсен (Anfinsen ) (б ), Мур (Moore ) (в ) и Стайн (Stein ) (г ) получили Нобелевскую премию по химии (1972 г.) , . На примере этого белка впервые было показано явление рефолдинга - самопроизвольного формирования третичной структуры после денатурации (то есть разрушения) . Значение белкового фолдинга заключается в том, что он приводит к формированию строго определенной (нативной) структуры белка, в которой он функционирует. Например, в опыте Анфинсена рибонуклеаза в результате рефолдинга восстановила свою ферментативную активность, то есть стала вновь хорошо катализировать биохимическую реакцию. Для того чтобы этот фермент работал, в единый каталитический центр (один кусочек пространства) должны из совершенно разных мест белковой цепи собраться пять аминокислотных остатков: гистидин (12), лизин (41), треонин (47), гистидин (119) и фенилаланин (120) .

    модель из базы данных PDB (PDB ID 5D6U), портреты ученых с сайта ru.wikipedia.org

    Актуальность проблемы

    Проблема заключается в том, что человечество со всеми своими вычислительными мощностями и арсеналом экспериментальных данных до сих пор не научилось строить модели, которые бы описывали процесс белкового фолдинга и предсказывать трехмерную структуру белка на основе его первичной структуры (то есть аминокислотной последовательности). Таким образом, полного понимания этого физического процесса до сих пор нет.

    Взрывной рост геномных проектов привел к тому, что секвенируется все больше геномов, а соответствующие последовательности ДНК и РНК наполняют базы данных по экспоненте. На рис. 3 изображены рост числа аминокислотных последовательностей, а также рост числа известных белковых структур в период с 1996 по 2007 годы. Хорошо видно, что число известных структур значительно меньше, чем число последовательностей. На момент написания настоящей статьи (август 2016 г.) число последовательностей в базе данных UniParc составляет более 124 миллионов, в то время как количество структур в базе данных PDB (Protein Data Bank ) - лишь чуть больше 121 тысячи, что составляет менее 0,1% от всех известных последовательностей, причем разрыв между двумя этими показателями стремительно нарастает и, вероятно, будет расти и дальше. Такое сильное отставание связано с относительной сложностью современных методов определения структур . При этом знать их очень важно. Поэтому вопрос применения вычислительных методов с целью предсказания белковых структур по их последовательностям стоит сейчас остро. В 2005 году авторитетный журнал Science признал проблему фолдинга белка одной из 125 крупнейших проблем современной науки .

    Рисунок 3. Сравнение темпов роста числа известных последовательностей и структур с 1996 по 2007 годы. На горизонтальной оси указываются годы, на левой вертикальной - число последовательностей в миллионах (сплошная линия ), на правой вертикальной - число структур в миллионах (пунктирная линия ). Четко видно отставание количества известных структур от количества последовательностей. К настоящему моменту разрыв вырос еще сильнее.

    После прочтения генома человека стали известны многие человеческие гены и, следовательно, аминокислотные последовательности, кодируемые ими . Однако это не значит, что мы знаем функции всех генов, иначе говоря, мы не знаем функции белков, кодируемых этими генами. Известно, что во многом функции белков можно предсказать по их структуре, хоть и не всегда , . Поэтому заветной мечтой является способность предсказывать структуру и, как следствие, функцию белка по самой нуклеотидной последовательности гена.

    Что делается для решения проблемы?

    Неверно, однако, думать, что мы не знаем совсем ничего. Конечно, накоплено большое количество фактов о фолдинге, известны закономерности этого процесса, разработаны различные методы его моделирования , . Чтобы отслеживать успехи, достигаемые на пути к решению проблемы фолдинга, был создан международный конкурс по предсказанию пространственной структуры белковых молекул - CASP (Critical Asessement of techniques for protein Structure Prediction ), проходящий раз в два года (сейчас соревнование проходит в двенадцатый раз, оно началось в апреле и закончится в декабре 2016 года). В этом состязании исследователи соревнуются, кто лучше предскажет структуру белка по его аминокислотной последовательности, причем конкурс проходит с использованием двойного слепого метода (на момент проведения конкурса структура белка-«загадки» попросту неизвестна; ее определение завершается каждый раз по окончании состязания). Пока что структуры белков-мишеней точно не были предсказаны ни разу.

    Существует две группы методов предсказания структуры.

    К первой относятся так называемые методы моделирования «с нуля» (ab initio, de novo , есть и другие синонимичные термины), когда модели строятся лишь на основании первичной структуры, без использования сравнительных методов с уже известными структурами, зато с использованием всего накопленного понимания физики сворачивания биополимеров. Фундаментальная значимость этих методов состоит в том, что они помогают понять физико-химические принципы белкового фолдинга, ответить на этот животрепещущий вопрос - почему белок сворачивается так, а не иначе? Однако недостатками этих методов являются очень большая сложность вычисления и невысокая точность . Эти методы требуют упрощений и приближений, а также являются неэффективными для предсказания структур крупных белков. В 2007 году за счет методов моделирования de novo впервые с высокой точностью была определена структура одного из белков бактерии Bacillus halodurans , но белок этот относительно невелик (112 аминокислотных остатков), а для получения точной модели потребовалась мощность более 70 000 персональных компьютеров и суперкомпьютера; кроме того, из 26 полученных моделей точной оказалась лишь одна . Методы молекулярной динамики (МД) позволяют описывать молекулярные события и способны проследить процесс сворачивания белка в нативную структуру: в 2010 году впервые удалось это сделать за счет вычислительной мощности специально созданного суперкомпьютера Anton .

    Ко второй группе методов относятся методы сопоставительного моделирования . Они основываются на явлении гомологии , то есть общности происхождения объектов (органов, молекул и др.). Таким образом, у «предсказателя» есть возможность сравнивать последовательность белка, структуру которого необходимо смоделировать, с шаблоном, то есть белком, структура которого известна и который предположительно является гомологом, и на основании их схожести строить модель с последующими корректировками (похожие последовательности сворачиваются в похожие структуры). Эти методы сейчас более популярны, так как предсказание структуры белков является важной практической задачей, а к настоящему моменту появились вычислительные средства, базы данных, а также стало известно, что количество возможных вариантов укладок белковых структур ограничено , (рис. 4). И пусть эти методы не снимают самой проблемы белкового фолдинга, они способны помочь решать конкретные практические задачи, пока другие бьются над исследованием более фундаментальных вопросов.

    Рисунок 4. Динамика выявления новых типов фолдов (вариантов упаковки). На горизонтальной оси откладывается время (годы), на левой вертикальной оси - доля новых фолдов (более детально - на вкладке) (сплошная линия ), а на правой вертикальной оси - общее число структур (пунктирная линия ), классифицированных в базе данных CATH . Отметим, что эта база данных занимается структурной классификацией белков, поэтому для нее принципиально знать возможные типы белковых фолдов. Явно видно, что со временем классифицируется все больше и больше белков, но при этом количество вариантов фолдов уменьшается.

    Нужно подчеркнуть, что современные методы предсказания белковых структур требуют большой вычислительной мощности и часто осуществляются на суперкомпьютерах или с помощью сетей распределенных вычислений , как, например, Rosetta@home и Folding@home . К участию в работе этих проектов приглашаются все желающие: нужно лишь запустить программу на своем компьютере, пока он не нужен пользователю.

    Некоторые закономерности фолдинга белка

    Известны некоторые закономерности белкового фолдинга. Сейчас считается, что этот процесс происходит поэтапно: сначала линейная цепочка, имеющая нулевую энтропию, быстро сворачивается с образованием статистического клубка - энтропийное сворачивание . Затем происходит гидрофобный коллапс : гидрофобные аминокислотные остатки «прячутся» вглубь молекулы, а гидрофильные - «расселяются» по поверхности (см. ниже). Результатом этого этапа является формирование расплавленной глобулы . После этого происходит формирование специфических связей (см. ниже), и белок переходит в состояние истинной глобулы , при этом свободная энергия резко падает .

    Последний этап не происходит при фолдинге неструктурированных белков - IDPs .

    Нужно отметить, что для каждой аминокислотной последовательности теоретически можно предположить множество путей, которыми она может идти для достижения нативной конформации. Однако известно, что белок не перебирает все возможные варианты, а движется по одному из возможных путей, определенных для каждой последовательности. Если бы белок пробовал все возможные варианты, то время пути от простой последовательности к нативному состоянию превысило бы время существования Вселенной (парадокс Левинталя)! Конечно, такого не происходит: время принятия белком нативной структуры составляет доли секунды. Это похоже на сборку кубика Рубика: из состояния несобранного кубика к состоянию собранного можно прийти множеством разнообразных путей, однако на соревнованиях по скорости сборки кубика побеждает тот, кто делает это быстрее и эффективнее, то есть выбирает определенный путь. На самом деле найти такой путь - и есть главная задача методов моделирования ab initio (см. выше). Ответ на фундаментальный вопрос фолдинга будет заключаться не просто в способности безошибочно моделировать структуры, а, в первую очередь, в том, чтобы знать и обосновывать путь достижения белком нативного состояния.

    Следует подчеркнуть значение котрансляционного фолдинга (рис. 1), о котором говорилось выше, в формировании структуры белка. Отметим, что присутствие рибосомы, на которой синтезируется белок, накладывает серьезные коррективы на процесс сворачивания цепочки. Это всегда нужно иметь в виду при моделировании фолдинга природных белков in vivo . Канал, в котором оказывается растущая цепь, ограничивает ее конформационную изменчивость, а потому далеко не все типы структур могут в ней формироваться , . Кроме того, растущая цепочка постоянно проталкивается вперед (на один аминокислотный остаток при каждом акте транспептидации-транслокации, то есть образования новой пептидной связи и последующего продвижения рибосомы), а потому логично будет предположить, что конформация цепи в рибосомном канале обладает такими качествами, как жесткость и векторность, что соответствует свойствам α-спирали . Кроме того, взаимная ориентация аминокислотных остатков в двух центрах внутри рибосомы всегда однотипная (эквивалентная), не зависящая от природы этих остатков, что тоже, по-видимому, способствует формированию α-спиралей . Действительно, α-спирали - наиболее типичный элемент вторичной структуры белков. Они были открыты Лайнусом Полингом (Liunus Pauling ) и Робертом Кори (Robert Corey ), которые вместе с Уолтером Колтуном (Walter Koltun ) предложили новый тип моделей молекул .

    В то же время, когда N-конец (содержащий аминогруппу) растущей цепи белка выходит из туннеля и погружается в раствор, на него начинают действовать физико-химические условия этой среды, и белок начинает подчиняться их правилам.

    Известный молекулярный биолог академик Александр Спирин в этой связи отмечает три различия между фолдингом in vitro и in vivo :

    1. Во-первых, различна стартовая конформация: если в экспериментальных условиях ренатурация начинается с некоего состояния развернутой цепочки в растворе, то в случае с рибосомой фолдинг начинается уже с какой-то определенной конформации, обеспеченной рибосомальным каналом.
    2. Во-вторых, при котрансляционном фолдинге сворачивание начинается с N-конца, то есть процесс фолдинга направленный, а в случае фолдинга без участия рибосомы поиск конформаций осуществляется сразу всей молекулой.
    3. Третье отличие заключается в том, что в случае котрансляционного фолдинга C-конец белковой цепи фиксирован рибосомой, относительно крупной частицей, что приводит к стабилизации промежуточных структур (см. выше), а в случае рефолдинга in vitro такой стабилизации не происходит.

    Эти соображения лишний раз доказывают, что биологические вопросы не могут решаться «всухую» за счет применения методов биоинформатики . Даже самые, казалось бы, выверенные компьютерные модели могут оказаться неточны, если они построены без учета факторов, реально действующих в природе.

    Для решения проблемы фолдинга разработаны так называемые эмпирические потенциалы: парных взаимодействий остатков, водородных связей, торсионных углов, центров масс боковых цепей и многие другие , . Например, потенциал сольватации позволяет предсказать, внутри или снаружи белка будет находиться аминокислотный остаток (соответственно заглубленный или экспонированный) в зависимости от его гидрофобности , . Известно, что одни аминокислоты «любят» воду (гидрофильные ), они будут с большей вероятностью располагаться на поверхности белковой молекулы, а другие - «не любят» (гидрофобные ) и «прячутся» в более недоступные для растворителя области молекулы, заслоняясь другими остатками (рис. 5). Гидрофобный эффект имеет большое значение в фолдинге белка.

    Рисунок 5. Гидрофобность аминокислот влияет на их пространственное распределение (на примере одной из человеческих дегидрогеназ). Гидрофильные аминокислоты показаны синим цветом , гидрофобные - красным . Можно заметить, что гидрофильные остатки стремятся располагаться на открытых для растворителя участках, в то время как гидрофобные - в закрытых областях молекулы.

    база данных PDB (PDB ID 5ICS)

    Важным аспектом формирования структуры белка на всех этапах является образование связей между радикалами (боковыми цепями) аминокислотных остатков. Они бывают разные: гидрофобные, электростатические и другие . Интересным вариантом является формирование дисульфидных связей («мостиков») за счет взаимодействия атомов серы боковых цепей цистеина. Например, в прославленной рибонуклеазе, за исследование структуры которой была дана Нобелевская премия, таких связей четыре. Однако здесь все не так просто. Если в состав белковой цепи входят два атома серы, принадлежащие цистеину, то легко сказать, что может образоваться один дисульфидный мостик. Но если атомов серы, к примеру, десять и, соответственно, образуются пять SS-связей, то мы не можем однозначно сказать, какие именно атомы серы будут попарно взаимодействовать друг с другом (а белок может). Согласно расчетам Томаса Крейтона (Thomas Creighton ), если в белке 5 дисульфидных связей, число возможных комбинаций составляет уже 945, если таких связей 10, то число вариантов составляет 654 729 075, а при 25 дисульфидных связях это число превышает 5 квадриллионов квадриллионов (более 5,8 × 10 30) . А в белке реализуется лишь один вариант, и притом всегда один и тот же! Следует тем не менее отметить, что это справедливо для самоорганизации белков in vitro («в пробирке», «в стекле», то есть в условиях эксперимента, а не в живом организме) в подходящих условиях, а in vivo (в живом организме) самоорганизации дисульфидных связей не происходит. Их образование катализирует специальный фермент - протеиндисульфидизомераза , или ПДИ , которая к тому же способна «исправлять» ошибки в случае неправильного образования SS-связи, таким образом корректируя процесс фолдинга , .

    Важно понимать, что процесс формирования окончательной структуры белка не заключается лишь в простом сворачивании цепочки. В клетках белки подвергаются ацетилированию, гликозилированию и многим другим модификациям. Поэтому, например, количество разных аминокислот в белках превышает известные 20 («магическая двадцатка», по образному выражению нобелевского лауреата Фрэнсиса Крика). Кроме того, для формирования сложных (олигомерных) белков необходимо формирование специфических связей между отдельными протомерами (например, в молекуле гемоглобина четыре протомера, то есть отдельно синтезированные цепочки). Для многих белков, особенно ферментов, важным является присоединение простетической группы, то есть небелкового компонента. Могут происходить и другие преобразования .

    Известны многие другие закономерности белкового фолдинга. Завеса тайны постепенно приподнимается. Однако картина до сих пор далека от целостной. Успехи предсказания структур пока только эпизодические. В связи с этим научное сообщество сделало следующий любопытный шаг: оно привлекло к решению вопроса широкую общественность, создав игру FoldIt , . Принять участие в мировом соревновании может любой желающий. Суть игры заключается в том, чтобы свернуть белковую цепочку максимально компактно, то есть привести белковую молекулу в такое состояние, в котором свободного места внутри клубочка как можно меньше - именно в таком виде белки присутствуют в природе (рис. 6). С точки зрения термодинамики, такому состоянию соответствует минимум свободной энергии , . Чем более компактная молекула получается, чем меньше полостей и открытых гидрофобных участков, чем больше открытых гидрофильных участков, водородных связей в структурах типа β-листов, чем меньше «столкновений» атомов, тем большее количество баллов игроку начисляется. Таким образом, наибольшее количество баллов получает модель с наименьшей свободной энергией. Большинство игроков FoldIt имеют лишь малую биохимическую подготовку либо не имеют ее вовсе . Игра основана на алгоритмах Rosetta и не является моделированием структур de novo , которое, как верно подмечают авторы, все еще остается исключительно сложной проблемой .

    Рисунок 6. Сравнение разных форм представления моделей белковых структур (на примере одной из человеческих трансфераз). а - Форма, наглядно демонстрирующая типы вторичных структур. б - Форма, показывающая реальное расположение атомов молекулы белка в пространстве (Space Fill ). Хорошо видно, что молекулы белков сильно компактизированы, между атомами мало свободного пространства.

    база данных PDB (PDB ID 5CU6)

    Группа игроков FoldIt принимает участие в CASP . Игра уже показала свою эффективность в предсказании структур и даже бóльшую эффективность в сравнении с другими методами, а также решила серьезную научную проблему структуры протеазы вируса иммунодефицита обезьян, которую наука не могла решить на протяжении более чем десятилетия .

    Говоря о применении разных методов и средств для решения обсуждаемой проблемы, всегда нужно помнить, что не все последовательности могут сворачиваться строго определенным образом. Вероятно, мы, глядя на результаты, к которым пришла эволюция к настоящему времени, видим только те последовательности, которые могут сворачиваться, поскольку они хорошо выполняли свои функции и были поддержаны отбором.

    «Гувернантки» для белков - шапероны

    Говоря о фолдинге, мы акцентировали внимание на относительной автономности этого процесса: белковая молекула принимает определенную конформацию на основании своей первичной структуры, и происходит это в конкретных (что важно) физико-химических условиях (кислотность, температура, природа растворителя и др.). Тем не менее не должно складываться впечатление, будто бы фолдинг абсолютно независим, особенно для крупных белков. Мы лишь упомянули о ферменте ПДИ, помогающем белку правильно свернуться. Кроме этого фермента, есть и другие (например, ППИ - пептидил-пролил-цис/транс-изомераза , ). Но ферменты - не единственная группа белков, помогающая правильно сворачиваться другим белкам. Существует еще одна особая группа белков, играющих важную роль в фолдинге. Называются они шаперонами .

    Шапероны - сложные белки с консервативным (то есть эволюционно малоизменчивым) механизмом действия, встречающиеся во всех царствах живой природы. Это и понятно: их роль в жизнедеятельности клетки огромна . Как говорилось выше, созревающая белковая цепочка выходит из рибосомы. Она еще незрелая, а пребывает в так называемом «расплавленном» состоянии. Такие незрелые молекулы подвержены дурному влиянию окружения: они могут взаимодействовать с другими клеточными белками, образуя агрегаты, что может приводить к болезням, например, болезни Альцгеймера или Паркинсона. Но есть и «правильное» русло, по которому может (и должно) быть направлено развитие белка, - тот путь, который приведет расплавленную глобулу в нативное состояние. Тут и помогают шапероны, «подкарауливая» и захватывая белковые цепочки у самого выхода из рибосомного туннеля и таким образом направляя незрелые белки, находящиеся на судьбоносном перепутье, в верное русло. Шапероны названы так неспроста: раньше в Англии так называли пожилую опытную даму, которая сопровождала молодую девушку, впервые вышедшую в свет под ее руководством, и удерживала ее от непродуманных контактов . (Термин «шаперон» и сейчас используется в близких значениях.) Шапероны не являются специфичными для разных аминокислотных последовательностей зарождающихся цепей, но они могут отличать зрелые белки от незрелых и действуют на последних.

    Важнейшая группа шаперонов - шаперонины . Интересна их структура: они представляют собой бочонки, составленные из двух колец. Сворачивающийся белок попадает внутрь шаперонина, а «вход» закрывается специальной «шапочкой» либо смыканием краев блоков, из которых состоят кольца , чтобы белковая молекула не покинула шаперонин раньше времени (рис. 7). В таком защищенном состоянии белок может окончательно принять нативную конформацию. Пока малопонятны процессы, происходящие внутри бочонков-шаперонинов.

    Рисунок 7. Схематическое изображение двух типов шаперонинов - I и II. а - Шаперонины I типа характерны для бактерий (шаперон GroEL имеет структуру бочонка, составленного из двух колец, в каждом - 7 «блоков»; внутри шаперонина - камера, в которой происходит превращение расплавленной глобулы в нативную; бочонок закрывается «крышкой» - GroES ); б - Шаперонины II типа, характерные для архей и эукариот (здесь каждое из двух колец состоит из 8 «блоков»; закрытие камеры происходит не за счет присоединения «крышки», а по механизму объектива фотоаппарата ).

    Нужно сказать, что шапероны не только участвуют в фолдинге созревающих цепей, но и помогают «сломанным» белковым структурам, которые возникли в клетке в результате определенных воздействий, вновь принять правильную конформацию. Наиболее типичная причина таких «поломок» - тепловой шок, то есть поднятие температуры. В связи с этим часто употребляют другие названия шаперонов - белки теплового шока (heat shock proteins, hsp ) или белки стресса. Шапероны выполняют другие важные функции в клетке, например, транспорт белков через мембраны и сборку олигомерных белков.

    Заключение

    Итак, для фолдинга белка строго необходимы следующие условия: первичная структура, конкретные физико-химические условия, а также две группы вспомогательных белков - специфически работающие ферменты и неспецифически работающие шапероны.

    Резюмируя, скажем, что белковый фолдинг - одна из центральных проблем современной биофизики. И хотя накоплен большой арсенал данных об этом явлении, до сих пор оно малопонятно, что выражается, в конечном счете, в невозможности предсказания трехмерной структуры на основании аминокислотной последовательности (особенно это касается крупных, в том числе олигомерных, белков). Успехи в этой области, а особенно моделирования de novo . (2005). Science. 309 , 78–102;

  • Геном человека: как это было и как это будет ;
  • Rigden D.J. From protein structure to functions with bioinformatics . Springer Science + Business Media B.V ., 2009. - 328 p.;
  • Финкельштейн А.В. и Птицын О.Б. Физика белка: Курс лекций с цветными и стереоскопическими иллюстрациями и задачами (3-е изд., испр. и доп.). М.: КДУ, 2012. - 456 с.;
  • Иванов В.А., Рабинович А.Л., Хохлов А.Р. Методы компьютерного моделирования для исследования полимеров и биополимеров. М.: Либроком, 2009. - 662 с.;
  • Greene L.H., Lewis T.E., Addou S., Cuff A., Dallman T., Dibley M. et al. (2007). . . М.: Высшая школа, 1986. - 303 с.;Внутриклеточная регуляция формирования нативной пространственной структуры белков Канал эукариотического шаперонина открывается подобно диафрагме фотоаппарата ;
  • Anfinsen C.B. (1973). Principles that govern the folding of protein chains . Science. 181 , 223–230.