Общие толерантные колиформные бактерии что делать. Колиформные бактерии. Бактерии в нашей воде

29.07.2023

Бактерии колиформные всегда присутствуют в пищеварительном тракте животных и человека, а также в отходах их жизнедеятельности. Они также могут находиться на растениях, почве и в воде, загрязнение которой является серьезной проблемой из-за возможности заражения заболеваниями, вызванными различными патогенами.

Вред для организма

Являются ли бактерии колиформные вредными? Большинство из них не вызывают заболеваний, тем не менее, некоторые редкие штаммы кишечной палочки могут вызвать серьезные заболевания. Кроме людей, могут быть заражены овцы и крупный рогатый скот. Вызывает беспокойство то, что зараженная вода по своим внешним характеристикам ничем не отличается от обычной питьевой по вкусу, запаху и внешнему виду. Бактерии колиформные встречаются даже в которую принято считать безупречной во всех смыслах. Проверка является единственным надежным способом узнать о наличии болезнетворных бактерий.

Что происходит при обнаружении?

Что делать, если бактерии колиформные или любые другие обнаруживаются в питьевой воде? В этом случае понадобится ремонт или модификация системы водоснабжения. При употреблении для дезинфекции предусмотрено обязательное кипячение, а также повторное тестирование, которое может подтвердить, что загрязнение не было устранено, если это были термотолерантные колиформные бактерии.

Организмы-индикаторы

Общие колиформные бактерии часто называют организмами-индикаторами, потому что они указывают на потенциальное наличие болезнетворных бактерий в воде, например, кишечной палочки. Хотя большинство штаммов являются безобидными и живут в кишечнике здоровых людей и животных, некоторые из них могут способствовать образованию токсинов, вызывать серьезные заболевания и даже приводить к летальному исходу. Если болезнетворные бактерии присутствуют в организме, то самыми распространенными симптомами являются расстройство желудочно-кишечного тракта, лихорадка, боль в животе и понос. Симптомы более ярко проявляются у детей или пожилых членов семьи.

Безопасная вода

Если общие колиформные бактерии в воде отсутствуют, то практически с полной уверенностью можно предположить, что она микробиологически безопасна для питья.
Если же они были обнаружены, то тогда будет оправданным проведение дополнительных тестов.

Бактерии любят тепло и влагу

Температура и погодные условия также играют немаловажную роль. Например, кишечная палочка предпочитает жить на поверхности земли и любит тепло, таким образом, колиформные бактерии в питьевой воде появляются в результате движения в составе подземных потоков при теплых и влажных погодных условиях, в то время как наименьшее количество бактерий будет найдено в зимнее время года.

Ударное хлорирование

Для эффективного уничтожения бактерий используют хлор, который окисляет все примеси. На его количество будут влиять такие характеристики воды, как уровень рН и температура. В среднем, вес на литр составляет приблизительно 0,3-0,5 миллиграмм. Чтобы убить общие колиформные бактерии в питьевой воде, требуется примерно 30 минут. Время контакта может быть сокращено за счет увеличения дозы хлора, но для этого могут потребоваться дополнительные фильтры для удаления специфического вкуса и запаха.

Губительный ультрафиолетовый свет

Популярным вариантом дезинфекции считаются ультрафиолетовые лучи. Этот способ не подразумевает использования каких-либо химических соединений. Однако это средство не применяется там, где общие колиформные бактерии превышают одну тысячу колоний на 100 мл воды. Сам прибор состоит из УФ-лампы, окруженной рукавом из кварцевого стекла, через который протекает жидкость, облучаемая ультрафиолетовым светом. Необработанная вода внутри аппарата должна быть полностью чистой и свободной от каких-либо видимых загрязнений, засоров или мутности, чтобы дать возможность облучения всех вредоносных организмов.

Другие варианты очистки

Существует множество других способов обработки, используемых для дезинфекции воды. Однако они не рекомендуется в качестве длительных по разным причинам.

  • Кипячение. При 100 градусах по Цельсию в течение одной минуты эффективно убиваются бактерии. Этот метод часто используется для дезинфекции воды во время чрезвычайных ситуаций или при необходимости. Это занимает время и является энергоемким процессом и, как правило, применяется только в небольших количествах воды. Это не долговременный или постоянный вариант для дезинфекции воды.
  • Озонирование. В последние годы этот метод используется в качестве способа улучшения качества воды, устранения различных проблем, в том числе бактериального заражения. Как и хлор, озон является сильным окислителем, который убивает бактерии. Но в то же время этот газ является нестабильным, и получить его можно только с помощью электричества. Блоки озонирования обычно не рекомендуются для дезинфекции, потому что они гораздо дороже хлорирования или ультрафиолетовых систем.
  • Йодирование. Некогда популярный способ дезинфекции в последнее время рекомендуется только для кратковременного или экстренного обеззараживания воды.

Термотолерантные колиформные бактерии

Это особая группа живых организмов, которые способны ферментировать лактозу при 44-45 градусах по Цельсию. К ним относят род Escherichia и некоторые виды Klebsiella, Enterobacter и Citrobacter. Если в воде присутствуют посторонние организмы, это свидетельствует о том, что она была недостаточно хорошо очищена, загрязнена повторно, либо в ней в избытке содержатся питательные элементы. При их обнаружении необходимо сделать проверку на наличие именно устойчивых к повышенной температуре колиформных бактерий.

Микробиологический анализ

Если были обнаружены колиформы, то это может говорить о том, что в воду попали Таким образом, начинают распространяться различные заболевания. В загрязненной питьевой воде можно встретить штаммы сальмонелл, шигелл, кишечной палочки и многих других возбудителей болезней, которые варьируются от легких нарушений пищеварительного тракта до тяжелейших форм дизентерии, холеры, брюшного тифа и многих других.

Бытовые источники заражения

За качеством питьевой воды ведут наблюдение, ее регулярно проверяют специализированные санитарные службы. А что может сделать обычный человек, чтобы обезопасить себя и оградить от нежелательного заражения? Какие существуют источники загрязнения воды в бытовых условиях?

  1. Вода из кулера. Чем больше людей прикасаются к данному приспособлению, тем больше вероятность проникновения вредоносных бактерий. Как показывают исследования, вода в каждом третьем кулере просто кишит живыми организмами.
  2. Дождевая вода. Как это ни удивительно, собранная после дождя влага является благоприятной средой для развития колиформных бактерий. Продвинутые садоводы не используют такую воду даже для полива растений.
  3. Озера и водоемы также относят к группе риска, так как в стоячей воде быстрее размножаются все живые организмы, а не только бактерии. Исключением можно назвать океаны, развитие и распространение там вредоносных форм минимально.
  4. Состояние трубопровода. Если сточные трубы не менялись и не очищались продолжительное время, то это может также привести к появлению неприятностей.

1. Обзор литературных источников

.1 Систематика кишечной палочки

Научная классификация

Домен: Бактерии

Тип: Протеобактерии

Класс: Гамма-протеобактерии

Порядок: Enterobacteriales

Семейство: Энтеробактерии

Род: Escherichia

Вид: Coli (Кишечная палочка)

Международное научное название

Escherichia coli (Migula 1895)

1.2 Строение и химический состав бактериальной клетки

Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения.

Клетка бактерий одета плотной оболочкой. Этот поверхностный слой, расположенный снаружи от цитоплазматической мембраны, называют клеточной стенкой. Стенка выполняет защитную и опорную функции, а также придает клетке постоянную, характерную для нее форму (например, форму палочки или кокка) и представляет собой наружный скелет клетки. Эта плотная оболочка роднит бактерии с растительными клетками, что отличает их от животных клеток, имеющих мягкие оболочки. Внутри бактериальной клетки осмотическое давление в несколько раз, а иногда и в десятки раз выше, чем во внешней среде. Поэтому клетка быстро разорвалась бы, если бы она не была защищена такой плотной, жесткой структурой, как клеточная стенка.

Толщина клеточной стенки 0,01-0,04 мкм. Она составляет от 10 до 50% сухой массы бактерий. Количество материала, из которого построена клеточная стенка, изменяется в течение роста бактерий и обычно увеличивается с возрастом.

Основным структурным компонентом стенок, основой их жесткой структуры почти у всех исследованных до настоящего времени бактерий является муреин (гликопептид, мукопептид). Это органическое соединение сложного строения, в состав которого входят сахара, несущие азот, - аминосахара и 4-5 аминокислот. Причем аминокислоты клеточных стенок имеют необычную форму (D-стереоизомеры), которая в природе редко встречается.

С помощью способа окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии могут быть разделены на двегруппы: грамположительныеиграмотрицательные.

Грамположительные организмы способны связывать некоторые анилиновые красители, такие, как кристаллический фиолетовый, и после обработки иодом, а затем спиртом (или ацетоном) сохранять комплекс иод-краситель. Те же бактерии, у которых под влиянием этилового спирта этот комплекс разрушается (клетки обесцвечиваются), относятся к грамотрицательным.

Химический состав клеточных стенок грамположительных и грамотрицательных бактерий различен. У грамположительных бактерий в состав клеточных стенок входят, кроме мукопептидов, полисахариды (сложные, высокомолекулярные сахара), тейхоевые кислоты (сложные по составу и структуре соединения, состоящие из сахаров, спиртов, аминокислот и фосфорной кислоты). Полисахариды и тейхоевые кислоты связаны с каркасом стенок - муреином. Какую структуру образуют эти составные части клеточной стенки грамположительных бактерий, мы пока еще не знаем. С помощью электронных фотографий тонких срезов (слоистости) в стенках грамположительных бактерий не обнаружено. Вероятно, все эти вещества очень плотно связаны между собой.

В стенках грамотрицательных содержится значительное количество липидов (жиров), связанных с белками и сахарами в сложные комплексы - липопротеиды и липополисахариды. Муреина в клеточных стенках грамотрицательных бактерий в целом меньше, чем у грамположительных бактерий. Структура стенки грамотрицательных бактерий также более сложная. С помощью электронного микроскопа было установлено, что стенки этих бактерий многослойные.

Внутренний слой состоит из муреина. Над ним находится более широкий слой из не плотно упакованных молекул белка. Этот слой в свою очередь покрыт слоем липополисахарида. Самый верхний слой состоит из липопротеидов.

Клеточная стенка проницаема: через нее питательные вещества свободно проходят в клетку, а продукты обмена выходят в окружающую среду. Крупные молекулы с большим молекулярным весом не проходят через оболочку.

Клеточная стенка многих бактерий сверху окружена слоем слизистого материала - капсулой. Толщина капсулы может во много раз превосходить диаметр самой клетки, а иногда она настолько тонкая, что ее можно увидеть лишь через электронный микроскоп, - микрокапсула.

Капсула не является обязательной частью клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она служит защитным покровом клетки и участвует в водном обмене, предохраняя клетку от высыхания.

По химическому составу капсулы чаще всего представляют собой полисахариды. Иногда они состоят изгликопротеидов (сложные комплексы сахаров и белков) и полипептидов (род Bacillus), в редких случаях - из клетчатки (род Acetobacter).

Слизистые вещества, выделяемые в субстрат некоторыми бактериями, обусловливают, например, слизисто-тягучую консистенцию испорченного молока и пива.

Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной.

Внутри цитоплазмы находятся все жизненно важные структуры и органеллы.

Цитоплазматическая мембрана выполняет очень важную роль - регулирует поступление веществ в клетку и выделение наружу продуктов обмена.

Через мембрану питательные вещества могут поступать в клетку в результате активного биохимического процесса с участием ферментов. Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы - структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.

На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя (липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину 20-30А. Такая мембрана называется элементарной.

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов - мостиков. Цитоплазматическая мембрана часто дает инвагинации - впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные мезосомами.Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы. Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур - аналоги митохондрий. Другие выполняют функции зндоплазматической сети или аппарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки, которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.

В цитоплазме бактерий содержатся рибосомы - белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды. Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.

У многих бактерий гранулы состоят из крахмала или других полисахаридов - гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты). Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.

Помимо различных структурных компонентов, цитоплазма состоит из жидкой части - растворимой фракции. В ней содержатся белки, различные ферменты, т-РНК, некоторые пигменты и низкомолекулярные соединения - сахара, аминокислоты.

В результате наличия в цитоплазме низкомолекулярных соединений возникает разность в осмотическом давлении клеточного содержимого и наружной среды, причем у разных микроорганизмов это давление может быть различным. Наибольшее осмотическое давление отмечено у грамположительных бактерий - 30 атм, у грамотрицательных бактерий оно гораздо ниже 4-8 атм.

В центральной части клетки локализовано ядерное вещество - дезоксирибонуклеиновая кислота (ДНК).

У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог - «ядерный эквивалент» - нуклеоид, который является эволюционно более примитивной формой организации ядерного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии - прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - и в нуклеоиде расположена в виде пучка фибрилл.

На поверхности некоторых бактерий имеются придаточные структуры; наиболее широко распространенными из них являются жгутики - органы движения бактерий.

Жгутик закрепляется под цитоплазматической мембраной с помощью двух пар дисков. У бактерий может быть один, два или много жгутиков. Расположение их различно: на одном конце клетки, на двух, по всей поверхности. Жгутики бактерий имеют диаметр 0,01-0,03 мкм, длина их может во много раз превосходить длину клетки. Бактериальные жгутики состоят из белка - флагеллина - и представляют собой скрученные винтообразные нити.

1.3 Морфология кишечной палочки и ее представителей

кишечный палочка микрофлора

Кишечная палочка - это полиморфная факультативная анаэробная короткая (длина 1-3 мкм, ширина 0,5-0,8 мкм) грамотрицательная палочка с закругленным концом. Штаммы в мазках располагаются беспорядочно, не образуя спор и перитрих. Некоторые штаммы имеют микрокапсулу и пили, широко встречается в нижней части кишечника теплокровных организмов. Большинство штаммов E. coli являются безвредными, однако серотип O157:H7 может вызывать тяжёлые пищевые отравления у людей.

Бактерии группы кишечных палочек хорошо растут на простых питательных средах: мясопептонном бульоне (МПБ), мясопептонном агаре (МПА). На среде Эндо образуют плоские красные колонии средней величины. Красные колонии могут быть с темным металлическим блеском (Е. coli) или без блеска (E.aerogenes).

Обладают высокой ферментативной активностью в отношении лактозы, глюкозы и других сахаров, а также спиртов. Не обладают оксидазной активностью. По способности расщеплять лактозу при температуре 37°С бактерии делят на лактозоотрицателъные и лактозоположительные кишечные палочки (ЛКП), или колиформные, которые формируются по международным стандартам. Из группы ЛКП выделяются фекальные кишечные палочки (ФКП), способные ферментировать лактозу при температуре 44,5°С..coli не всегда обитают только в желудочно-кишечном тракте, способность некоторое время выживать в окружающей среде делает их важным индикатором для исследования образцов на наличие фекальных загрязнений.

Общие колиформные бактерии (ОКБ) - грамотрицательные, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до кислоты, альдегида и газа при температуре 37 +/- 1°C в течение 24 - 48 ч.

Колиформные бактерии (колиформы) - группа грамотрицательных палочек, в основном живущих и размножающихся в нижнем отделе пищеварительного тракта человека и большинства теплокровных животных (например, домашнего скота и водоплавающих птиц). Вводу попадают, как правило, с фекальными стоками и способны выживать в ней в течение нескольких недель, хотя при этом (в подавляющем большинстве) не размножаются.

Термотолерантные колиформные бактерии играют важную роль при оценке эффективности очистки воды от фекальных бактерий. Более точным индикатором служит именно E. coli (кишечная палочка), так как источником некоторых других термотолерантных колиформ могут служить не только фекальные воды. В тоже время общая концентрация термотолерантных колиформ в большинстве случаев прямо пропорциональна концентрации E. coli, а их вторичный рост в распределительной сети маловероятен (за исключением случаев наличия в воде достаточного количества питательных веществ, при температуре выше 13 °C.

Термотолерантные колиформные бактерии (ТКБ) - входят в число общих колиформных бактерий, обладают всеми их признаками и, кроме того, способны ферментировать лактозу до кислоты, альдегида и газа при температуре 44 +/ - 0,5 °C в течение 24 ч.

Включают род эшерихия и в меньшей степени отдельные штаммы цитробактер, энтеробактер и клебсиеллу. Из этих организмов только Е. соli специфично фекального происхождения, причем она всегда присутствует в больших количествах в экскрементах человека и животных и редко обнаруживается в воде и почве, не подвергшихся фекальному загрязнению. Считается, что обнаружение и идентификация Е. соli дает достаточную информацию для установления фекальной природы загрязнения.

Колиформы в большом количестве содержатся в бытовых сточных водах, а также в поверхностном стоке с территорий скотоводческих ферм. В водоисточниках, используемых для централизованного питьевого и хозяйственно-бытового водоснабжения, допускается численность общих колиформ не более 1000 единиц (КОЕ/100 мл, КОЕ - колониеобразующие единицы), а термотолерантных колиформ - не более 100 единиц. В питьевой воде колиформыне должны обнаруживаться в пробе объемом 100 мл. Допускается случайное попадание колиформных организмов в распределительную систему, но не более чем в 5% проб, отобранных в течение любого 12-месячного периода при условии отсутствия E. coli.

Присутствие колиформных организмов в воде свидетельствует о ее недостаточной очистке, вторичном загрязнении или о наличии в воде избыточного количества питательных веществ.

2. Материалы и методы исследования

При исследовании относительно чистой в микробном отношении воды на наличие патогенных микроорганизмов необходимо концентрировать искомую микрофлору, содержащуюся в ничтожно малом количестве в воде. Обнаружение возбудителей кишечных инфекций в воде открытых водоемов и сточных водах на фоне преобладающей массы сапрофитной микрофлоры наиболее эффективно при концентрировании искомых бактерий в средах накопления, которые угнетают рост сопутствующей микрофлоры. Следовательно, при проведении анализа воды, имеющей различную степень общего микробного загрязнения, используют определенные методы выделения патогенной микрофлоры.

Открытые ведаемы обычно характеризуется значительным содержанием взвешенных веществ, т.е. мутностью, часто цветностью, малым содержанием солей, относительно малой жесткостью, наличием большого количества органических веществ, относительно высокой окисляемостью и значительным содержанием бактерий. Сезонные колебания качества речной воды нередко бывают весьма резкими. В период паводков сильно возрастает мутность и бактериальная загрязненность воды, но обычно снижается ее жесткость (щелочность и солесодержание). Сезонные изменения качества воды в значительной степени влияют на характер работы очистных сооружений водопровода в отдельные периоды года.

Количество микробов в 1 мл воды зависит от наличия в ней питательных веществ. Чем вода загрязненнее органическими остатками, тем больше в ней микробов.Особенно богаты микробами открытые водоемы и реки. Наибольшее количество микробов в них находится в поверхностных слоях (в слое 10 см от поверхности воды) прибрежных зон. С удалением от берега и увеличением глубины количество микробов уменьшается.

Речной ил богаче микробами, чем речная вода. В самом поверхностном слое ила бактерий так много, что образуется из них как бы пленка. В этой пленке содержится много нитчатых серобактерий, железобактерий, они окисляют сероводород до серной кислоты и этим препятствуют угнетающему действию сероводорода (предотвращается замор рыб).

Реки в районах городов часто являются естественными приемниками стоков хозяйственных и фекальных нечистот, поэтому в черте населенных пунктов резко увеличивается количество микробов. Но по мере удаления реки от города число микробов постепенно уменьшается, и через 3-4 десятка километров снова приближается к исходной величине. Это самоочищение воды зависит от ряда факторов: механическое осаждение микробных тел; уменьшение в воде питательных веществ, усвояемых микробами; действие прямых лучей солнца; пожирание бактерий простейшими и др.

Патогенны могут попадать в реки и водоемы со сточными водами. Бруцеллезная палочка, палочка туляремии, вирус полиомиелита, вирус ящура, а также возбудители кишечных инфекций - палочка брюшного тифа, палочка паратифа, дизентерийная палочка, холерный вибрион - могут сохраняться в воде длительное время, и вода может стать источником инфекционных заболеваний. Особенно опасно попадание болезнетворных микробов в водопроводную сеть, что случается при ее неисправности. Поэтому за состоянием водоемов и подаваемой из них водопроводной воды установлен санитарный биологический контроль.

2.1 Гидрометрический поплавковый метод измерения и определения скорости течения воды

Для измерения и определения скорости течения воды существует - поплавковый метод, который основан на отслеживании движения предмета, опущенного в поток (поплавка) с помощью приборов или невооруженным глазом. Поплавки сбрасываются в воду на малых реках с берега или с лодки. По секундомеру определяется время и прохождение поплавка между двумя соседними створами, расстояние между которыми известно. Поверхностная скорость течения приравнивается скорости движения поплавка. Поделив пройденное поплавком расстояние на время наблюдения, получают скорость потока.

2.2 Отбор воды, хранение и транспортировка проб

Пробы воды для бактериологического анализа отбирают с соблюдением правил стерильности: в стерильные бутылки или стерильными приборами - батометрами в количестве 1 л.

Для отбора воды из открытых водоемов, сточных вод, воды из бассейнов, колодцев удобен так называемый бутылочный батометр.

Методические указания по обнаружению возбудителей кишечных инфекций бактериальной природы в воде.

При отборе проб воды из открытых водоемов следует предусмотреть следующие точки: в месте застоя и в месте наиболее быстрого течения (с поверхности и на глубине 50 - 100 см).

Бутылочный батометр. Батометры - приборы различной конструкции для взятия проб воды с разных глубин. В классическом виде это цилиндры, которые можно опустить на определенную глубину, там закрыть и извлечь. Самостоятельно изготовить классический батометр непросто. Но вместо него можно использовать простую стеклянную или пластиковую бутылку с узким горлышком, утяжеленную каким-либо грузом и заткнутую пробкой, идеально - корковой. К горлышку бутылки и к пробке привязываются веревки. Опустив бутылку на нужную глубину (главное, чтобы она тонула, для этого и нужен груз), необходимо выдернуть пробку - поэтому затыкать ее туго не следует. Дав бутылке время наполниться на нужной глубине (1-2 мин), ее вытаскивают на поверхность. Делать это следует как можно более энергично - при большой скорости подъема и узком горлышке вода из вышележащих слоев практически не попадет внутрь.
Пробы, поднятые на поверхность с помощью батометра, также следует «сгущать», используя планктонную сеть, а затем рассчитывать объем процеженной воды. Поскольку этот объем должен быть, по возможности, большим, батометр следует делать как можно большего размера, например использовать 2-литровую стеклянную или пластиковую бутылку или какой-либо еще сосуд большого размера с узким горлом. На веревке, к которой привязана бутылка, также следует сделать отметки через каждый метр - для определения глубины отбора проб.

Первая контрольная точка у дамбы (начало пляжа) - точка забора (ТЗ1).

Вторая контрольная точка у лодочной станции (конец пляжа) - точка забора (ТЗ2).

Т31-первая контрольная точка у дамбы (начало пляжа) Т32-вторая контрольная точка у лодочной станции (конец пляжа)

2.3 Хранение и транспортирование проб

К исследованию проб в лаборатории необходимо приступить как можно быстрее с момента отбора.

Анализ следует провести в течение 2-х часов после забора.

Если не может быть соблюдено время доставки пробы и температура хранения, анализ пробы проводить не следует.

2.4 Подготовка посуды к анализу

Лабораторная посуда должна быть тщательно вымыта, ополоснута дистиллированной водой до полного удаления моющих средств и других посторонних примесей и высушена.

Пробирки, колбы, бутылки, флаконы должны быть заткнуты силиконовыми или ватно-марлевыми пробками и упакованы так, чтобы исключить загрязнение после стерилизации в процессе работы и хранения. Колпачки могут быть металлические, силиконовые, из фольги или плотной бумаги.

Новые резиновые пробки кипятят в 2%-м растворе натрия двууглекислого 30 минут и 5 раз промывают водопроводной водой (кипячение и промывание повторяют дважды). Затем пробки 30 минут кипятят в дистиллированной воде, высушивают, заворачивают в бумагу или фольгу и стерилизуют в паровом стерилизаторе. Резиновые пробки, использованные ранее, обеззараживают, кипятят 30 минут в водопроводной воде с нейтральным моющим средством, промывают в водопроводной воде, высушивают, монтируют и стерилизуют.

Пипетки со вставленными тампонами из ваты должны быть уложены в металлические пеналы или завернуты в бумагу.

Чашки Петри в закрытом состоянии должны быть уложены в металлические пеналы или завернуты в бумагу.

Подготовленную посуду стерилизуют в сухожаровом шкафу при 160-170°С 1 час, считая с момента достижения указанной температуры. Простерилизованную посуду можно вынимать из сушильного шкафа только после его охлаждения ниже 60 °С.

После выполнения анализа все использованные чашки и пробирки обеззараживают в автоклаве при (126±2)°С 60 минут. Пипетки обеззараживают кипячением в 2%-м растворе NaHC03.

После охлаждения удаляют остатки сред, затем чашки и пробирки замачивают, кипятят в водопроводной воде и моют с последующим ополаскиванием дистиллированной водой.

В чашки Петри заливают заранее приготовленный питательный агар ЭНДО и ставят для застывания.

2.5 Метод мембранных фильтров

Mетод определения количества клеток E.coli в единице объема жидкости (коли-индекс); суть метода заключается в фильтровании анализируемой жидкости через мембранные фильтры, задерживающие бактерии, после чего эти фильтры помещают на твердую питательную среду и подсчитывают выросшие на ней колонии бактерий.

Подготовка мембранных фильтров

Мембранные фильтры должны быть подготовлены к анализу в соответствии с указаниями завода - изготовителя.

Подготовка фильтровального аппарата

Фильтровальный аппарат обтирают ватным тампоном, смоченным спиртом, и фламбируют. После охлаждения на нижнюю часть фильтровального аппарата (столик) кладут фламбированным пинцетом стерильный мембранный фильтр, прижимают его верхней частью прибора (стаканом, воронкой) и закрепляют устройством, предусмотренным конструкцией прибора.

При методе мембранных фильтров определенное количество воды пропускается через специальную мембрану с размером пор порядка 0.45 мкм.

В результате, на поверхности мембраны остаются все находящиеся в воде бактерии. После чего мембрану с бактериями помещают на специальную питательную среду (ЭНДО). После чего чашки Петри переворачивали и помещали в термостат на определенное время и температуру. Общие колиформные бактерии (ОКБ) - инкубировали при температуре 37 +/- 1°C в течение 24-48 ч. Для определения термотолерантных бактерий посев производят в среду, предварительно прогретую до температуры 44°С, и инкубируют при этой же температуре в течение 24 часов.

Среда светочувствительна. Поэтому все засеянные чашки предохраняют от света.

Во время этого периода, называемого инкубационным, бактерии получают возможность размножиться и образовать хорошо различимые колонии, которые уже легко поддаются подсчету.

По окончании сроков инкубации производят просмотр посевов:

а) отсутствие микробного роста на фильтрах или обнаружение на них колоний, не характерных для бактерий кишечной группы (губчатые, пленчатые с неровной поверхностью и краем), позволяет на этом этапе анализа закончить исследования (18-24 ч) с выдачей отрицательного результата на присутствие кишечных палочек в анализируемом объеме воды;

б) при обнаружении на фильтре колоний, характерных для кишечных палочек (темно-красных с металлическим блеском или без него, розовых и прозрачных), исследование продолжают и микроскопируют.

Если рост круглых колоний малинового цвета с металлическим блеском диаметром 2,0-3,0 мм - Escherichia coli 3912/41 (055:K59);

Если рост круглых колоний малинового цвета диаметром 1,5-2,5 мм с нечетким металлическим блеском - Escherichia coli 168/59 (O111:K58)

2.6 Учет результатов

После инкубационного периода 48 часов для общих колиформных бактерий и 24 часа для термоталерантных бактерий производят подсчет выросших на чашках колоний.

Колонии, выросшие на поверхности, а также в глубине агара, подсчитывали с помощью лупы с пятикратным увеличением или специальным прибором с лупой. Для этого чашку кладут вверх дном на черный фон и каждую колонию отмечают со стороны дна тушью или чернилами для стекла.

Для подтверждения наличия ОКБ исследуют:

все колонии, если на фильтрах выросло менее 5 колоний;

не менее 3 - 4 колоний каждого типа.

Для подтверждения наличия ТКБ исследуют все типичные колонии, но не более 10.

Подсчитывают число колоний каждого типа.

Вычисление и представление результатов.

Результат анализа выражают числом колоний образующих единиц (КОЕ) общих колиформных бактерий в 100 мл воды. Для подсчета результата суммируют число колоний, подтвержденных как общие колиформные бактерии, выросших на всех фильтрах, и делят на 3.

Так как такой метод анализа воды предполагает только определение общего числа колонии - образующих бактерий разных типов, то по его результатам нельзя однозначно судить о присутствии в воде патогенных микробов. Однако, высокое микробное число свидетельствует об общей бактериологической загрязненности воды и о высокой вероятности наличия патогенных организмов.

Каждую выбранную изолированную колонию исследуют на принадлежность к Граму.

Окраска по Граму

Окраска по Граму имеет большое значение в систематике бактерий, а также для микробиологической диагностики инфекционных заболеваний. Особенностью окраски по Граму является неодинаковое отношение различных микроорганизмов к красителям трифенилметановой группы: генциановому, метиловому или кристаллическому фиолетовому. Микроорганизмы, входящие в группу грамположительных Грам (+), например стафилококки, стрептококки, дают прочное соединение с указанными красителями и йодом. Окрашенные микроорганизмы не обесцвечиваются при воздействии на них спиртом, вследствие чего при дополнительной окраске фуксином Грам (+) микроорганизмы не изменяют первоначально принятый фиолетовый цвет. Грамотрицательные Грам (−) микроорганизмы (бактероиды, фузобактерии и др.) образуют с генциановым кристаллическим или метиленовым фиолетовым и йодом легко разрушающееся под действием спирта соединение, в результате чего они обесцвечиваются и затем окрашиваются фуксином, приобретая красный цвет.

Реактивы: карболовый раствор генцианвиолета или кристалвиолета, водный раствор Люголя, 96% этиловый спирт, водно-спиртовой раствор фуксина.

Методика окраски. На фиксированный мазок накладывают кусочек фильтровальной бумаги и на нее наливают карболовый раствор генцианвиолета от 1/2 до 1 минуты. Сливают краситель и, не смывая, наливают раствор Люголя на 1 минуту. Сливают раствор Люголя и прополаскивают препарат в 96% спирте в течение от 1/2 до 1 минуты, пока не перестанет отходить краситель. Промывают водой. Дополнительно окрашивают разведенным фуксином от 1/2 до 1 минуты. Сливают краситель, промывают и высушивают препарат.

3. Результаты исследования

.1 Микробиологический анализ воды Печерского озера (на примере E . coli ) в весенний период (май) исследования 2009-2013 гг.

В результате трехкратного забора воды в двух точках отбора проб (ТЗ1 - в начале пляжа, у дамбы, ТЗ2 - конец пляжа, лодочная станция) нами были высчитаны средние показатели ОКБ и ТКБ, результаты которых представлены в таблице 3.1.

Таблица 3.1. Средние показатели ОКБ и ТКБ в воде Печерского озера за май 2013 г.

Показатель содержания бактерий E.coli по ОКБ в начале и в конце мая в ТЗ1 (у дамбы) не различаются, составив 195 КОЕ/см 3 , что в 3,3 раза меньше по сравнению с пробой воды, отобранной в ТЗ2 (у лодочной станции) в начале мая и в 4,3 раза больше в конце мая.

Изучение динамики содержания кишечной палочки в воде Печерского озера за май 2013 года по данным СЭС подтвердил правильность проведения собственных исследований и показала, что показатель ОКБ в ТЗ2 в 3,4 раза выше чем в ТЗ1 (по собственным результатам в 3,3 раза больше).

Изучение изменения показателей ОКБ и ТКБ за месяц май с 2009 по 2013 гг. показало широкое варьирование показателей, что наглядно представлено на рисунках 3.1 - 3.2

Анализ данных учреждения здравоохранения «Могилевского зонального центра гигиены и эпидемиологии» за начало мая 2008-2013 гг.


По окончанию анализа данных за начало мая 2008-2013 гг., мы установили что в 2008,2012 годах в ТЗ1 ОКБ оказалось больше чем в ТЗ2.

Анализ данных учреждения здравоохранения «Могилевского зонального центра гигиены и эпидемиологии» за конец мая 2008-2013 гг.

Общие колиформные бактерии согласно СанПиНу должны отсутствовать в 100 мл питьевой воды

Термотолерантные фекальные колиформы согласно СанПиНу должны отсутствовать в 100 мл исследуемой питьевой воды.

Для открытых водоемов по ОКБ не более 500 КОЕ на 100 мл воды, по ТКБ не более 100 КОЕ на 100 мл воды.

Наличие в воде кишечных палочек подтверждает фекальную природу загрязнения.


По результатам измерений в летнюю межень колиформные бактерии присутствуют в небольших количествах, обычно от ста до нескольких сот единиц, и лишь в периоды паводков кратковременно повышаются до 1000 и более единиц.

Низкие значения летом могут быть связаны с несколькими факторами:

) интенсивной солнечной радиацией, которая губительна для бактерий;

) повышенными значениями рН в летний период (летом обычно рН > 8, зимой < 8) за счет развития фитопланктона;

) выделением в воду метаболитов фитопланктона, ингибирующих бактериальную флору.

С началом осенне-зимнего сезона перечисленные факторы существенно ослабляются, и численность бактерий повышается до уровня нескольких тысяч единиц. Наибольшие экстремумы попадают на периоды таяния снега, особенно в половодье, когда талые воды смывают бактерии с поверхности водосбора.

Общее число колонии образующих бактерий в середине лета как привело ниже, чем в весенне-осенний период, что связано с интенсивной солнечной радиацией, которая губительна для бактерий.

Реки в районах городов часто являются естественными приемниками стоков хозяйственных и фекальных нечистот, поэтому в черте населенных пунктов резко увеличивается количество микробов. Но по мере удаления реки от города число микробов постепенно уменьшается, и через 3-4 десятка километров снова приближается к исходной величине.

Наибольшее количество микробов в открытых водоемах находится в поверхностных слоях (в слое 10 см от поверхности воды) прибрежных зон. С удалением от берега и увеличением глубины количество микробов уменьшается.

Речной ил богаче микробами, чем речная вода. В самом поверхностном слое ила бактерий так много, что образуется из них как бы пленка. В этой пленке содержится много нитчатых серобактерий, железобактерий, они окисляют сероводород до серной кислоты и этим препятствуют угнетающему действию сероводорода (предотвращается замор рыб).

Заключение

кишечный палочка возбудитель бактерия

Для нахождения и идентификации кишечной палочки был произведен микробиологический анализ проб за начало мая 2013 г. Также осуществлен статистический анализ данных учреждения здравоохранения «Могилевского зонального центра гигиены и эпидемиологии» за начало мая 2008-2012 гг.

По окончанию анализа было установлено, что рассчитанное нами число бактерий группы кишечных палочек не превышает допустимой нормы.

По окончанию статистического анализа данных учреждения здравоохранения «Могилевского зонального центра гигиены и эпидемиологии» за 2008-2012 гг., было установлено, что в летнюю межень колиформные бактерии присутствуют в небольших количествах. Общее число колонии образующих бактерий в середине лета как привело ниже, чем в весенне-осенний период, так как интенсивной солнечной радиацией, которая губительна для бактерий, а с началом осенне-зимнего сезона численность бактерий повышается до уровня нескольких тысяч единиц. Наибольшие экстремумы попадают на периоды таяния снега, особенно в половодье, когда талые воды смывают бактерии с поверхности водосбора.

Список литературы

1. Фомин Г.С. Вода. Контроль химической, бактериальной и радиационной безопасности по международным стандартам. Энциклопедический справочник. М.: Изд-во «Протектор», 1995.

Долгоносов Б.М., Дятлов Д.В., Сураева Н.О., Богданович О.В., Громов Д.В., Корчагин К.А. Информационно-моделирующая система Aqua CAD - инструмент по управлению технологическими режимами на водопроводной станции // Водоснабжение и санитарная техника. 2003. №6. С. 26-31.

Долгоносов Б.М., Храменков С.В., Власов Д.Ю., Дятлов Д.В., Сураева Н.О., Григорьева С.В., Корчагин К.А. Прогноз показателей качества воды на входе водопроводной станции // Водоснабжение и санитарная техника 2004. №11. С. 15-20.

Кочемасова З.Н., Ефремова С.А., Рыбакова А.М. Санитарная микробиология и вирусология. М.: Медицина, 1987.

СанПиН 2.1.5.980-00. Водоотведение населенных мест, санитарная охрана водных объектов. Гигиенические требования к охране поверхностных вод.

СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.

МУК 4.2.1018-01. Методы контроля. Биологические и микробиологические факторы. Санитарно-микробиологический анализ питьевой воды.

Под определение «колиформы» попадает несколько групп бактерий. По всем культуральным и морфологическим признакам это энтеробактерии из группы кишечной палочки. Они имеют несколько общих черт и являются санитарно-показательными микроорганизмами, так как выявление их в воде, почве или других средах говорит о фекальном загрязнении исследуемых образцов.

Колиформы – собирательное название, оно объединяет в себе такие бактерии, как:

  • Кишечная палочка.
  • Клебсиеллы.
  • Гафнии.
  • Цитробактер.
  • Энтеробактер.

Кишечная палочка присутствует в каждом организме, и никаких последствий для здоровья человека это не приносит, пока показатель не превышает естественное число этих бактерий. Но когда норма по каким-либо причинам превышается, то появляются симптомы дисбактериоза, который в большинстве случаев успешно лечится стационарно. У кишечной палочки выделяют две группы представителей: нормальные и патогенные. Лактозопозитивные и лактозонегативные не опасны, а серотип О157:Н7 является причиной тяжелых пищевых отравлений.

Палочковидные бактерии энтеробактер есть в почве и воде, а также в кишечнике млекопитающих. Некоторых представителей этого рода удалось выделить из корней растений. Они – возбудители инфекций мочевыводящих путей и пищевых инфекций.

Микроорганизмы цитробактер предпочитают водную среду, встречаются в земле и пищевых продуктах. Они вызывают заболевания только на фоне ослабленной иммунной системы.

Клебсиеллы – это простейшие, способные образовывать защитную капсулу. Такие колиформы, помимо кишечника, есть на слизистых оболочках и на коже. Их присутствие в воде, почве и растениях делает возможным содержание клебсиелл во фруктах и овощах.

Klebsiella pneumoniae

Гафнии – род палочек, имеющих отрицательную окраску по Граму, живущих в организмах человека, птиц и пчел. Их нередко выделяют из меда, речной рыбы, молочных продуктов.

Перечисленные колиформы являются своеобразными индикаторами, указывающими на возможное присутствие в пробе патогенных микроорганизмов.

Классификация колиформных микроорганизмов

Все описываемые бактерии группы кишечной палочки способны ферментировать лактозу, только происходит это при различных температурах. Поэтому выделяют:

  • общие колиформы (сбраживают углеводы, содержащиеся в молоке, при 35-37°C),
  • термотолерантные или фекальные колиформы (ферментируют сахар в молоке при 44-44,5°C).

Их достаточно просто обнаружить в воде и подсчитать количество. Общих колиформных (как и термотолерантных) микроорганизмов в ней не должно быть вообще. Иначе жидкость признается недостаточно очищенной и непригодной для питья.

Как проводят исследования в лабораториях?

Колиформы, выявленные в исследуемых образцах, имеют различное санитарно-эпидемиологическое значение. Если в молоке, воде или земле будут найдены термотолерантные бактерии рода Эшерихия – это прямое доказательство того, что имеет место свежее фекальное загрязнение.

Присутствие простейших из родов Цитробактер или Энтеробактер скажет о том, что в исследуемой среде произошло загрязнение несколько недель назад. Их наличие менее значимо.

Если человек был болен дизентерией или брюшным тифом, то в микрофлоре к моменту выздоровления обнаружатся лактозоотрицательные виды кишечной палочки. Они называются так потому, что потеряли способность сбраживать лактозу. А вот колиформы, которые не будут расти в цитратной среде Козера и смогут ферментировать углеводы при температуре от 43 до 45°C, подскажут врачам, что имеет место свежее фекальное загрязнение.

Бактерии группы кишечных палочек выявляют с использованием питательной среды Кода. Она позволяет найти и опознать энтеробактерии по их способности ферментировать лактозу. Если в исследуемых образцах будут присутствовать колиформы, то среда Кода либо поменяет исходный зеленый цвет на желтый и помутнеет, либо будет наблюдаться только помутнение.

Термотолерантные и прочие колиформы хорошо определяются на других питательных составах (мясопептонном бульоне и мясопептонном агаре). Если исследования проводятся с помощью среды Эндо, то на ней они проявятся в виде плоских красных колоний. Кишечная палочка образует колонию с металлическим блеском темного цвета.

Нужно помнить, что патогенные колиформные штаммы попадают в организм фекально-оральным путем:

  • немытые овощи и фрукты;
  • несоблюдение правил гигиены;
  • применение воды (не прошедшей очистку) для полива;
  • употребление молока или воды, которые не прошли термическую обработку, – прямые пути заражения.

Так как в домашних условиях определить наличие колиформных бактерий в воде или продуктах нельзя, то превентивные меры – лучший способ уберечь себя от заболеваний.

Термотолерантные колиформные бактерии находятся в желудочно-кишечном тракте человека и ряда животных, а также в их фекалиях. Они представляют группу организмов, способных ферментировать лактозу при 44-45°С и включающих такие виды как:

  • Klebsiella;
  • Enterobacter;
  • Citrobacter;
  • вирус кишечной палочки.

Эти организмы быстро обнаруживаются, поэтому выполняют вторичную роль индикатора при проверке эффективности очистки жидкости от фекальных микробов. Главным индикатором служит E.Coli, но ее идентификация слишком сложна для рутинного контроля чистоты жидкости. А поскольку концентрация термотолерантных микроорганизмов прямо пропорциональна концентрации E.Coli, использование их в качестве указателя уровня загрязнения воды весьма практично.

лаборатория нашей компании при МГУ имени М.В. Ломоносова

Цены на бактериологический анализ

От 1 700 руб. ЗАКАЗАТЬ

Микробиологический анализ (3 показателя)

Исследуемые показатели: общее микробное число (ОМЧ), общие колиформные бактерии и термотолерантные колиформные бактерии.

Очистка воды

При выявлении таких организмов необходимо проводить дополнительные тесты, позволяющие определить уровень безопасности питьевой воды. Сотрудники компании "ДОМИАТО" не только сделают анализ жидкости в лабораторных условиях, но на основании полученных результатов подберут оптимальную водоочистительную систему и фильтрующее оборудование.

Заказать проверку воды на наличие термотолерантных колиформных бактерий с гарантией высокой точности результата в сервисной компании "ДОМИАТО" по доступной цене.

Сегодня, когда здоровье стало не только необходимостью, но и модным брендом, мы все больше внимания уделяем правильному питанию и . Но очень часто забываем, что наше самочувствие во многом определяется водным балансом организма. И тут важно не только, сколько воды мы пьем, но и какую. В определении качества воды уже давно нашими помощниками стали колиформные бактерии. Этот живой индикатор качества питьевой воды легок в обнаружении и подсчете и применяется в микробиологическом анализе. Бактерий в питьевой воде быть не должно - это факт. А вот о колиформных бактериях в питьевой воде мы знаем мало.

Немного общих знаний

Армия их неисчислима

По форме клетки бактерии бывают как шарики (кокки) и палочки (бациллы), спиральки (спириллы) и изогнутые (вибрионы). Автотрофные бактерии сами синтезируют органические вещества из неорганических (фотосинтетики и хемосинтетики). Но их меньшинство. Большая часть бактерий - гетеротрофы, среди которых выделяют сапротрофов (используют органические вещества продуктов жизнедеятельности и отмершие части живых организмов) и симбионты (используют органические вещества живых организмов или их продукты жизнедеятельности). Симбионты человека называются энтеробактериями, и интересующие нас колиформные бактерии именно такие.

Кто же это?

В условно выделенную по морфологии и культуре группу колиформных бактерий объединяют представителей родов Escherichia , Citrobacter, Enterobacter и Klebsiella, которые используются в санитарной микробиологии как маркеры попадания потенциально опасных микроорганизмов на объекты внешней среды . Простым языком - это бактерии группы кишечной палочки, то есть все, что похожи на кишечную палочку (Escherichia coli ). Это грамотрицательные (чисто микробиологическая характеристика по отношению организмов к способности окрашиваться или нет в мазках) палочки, которые живут в нижних отделах кишечника человека и многих теплокровных животных (домашние скот и птица). В воде они оказываются с фекальными стоками и могут служить маркерами ее загрязнения.

Биохимические характеристики

Все бактерии группы кишечной палочки обладают способностью к ферментации лактозы, но делают это при разных температурных показателях . Выделяют две группы бактерий:

  • Общие колиформные бактерии. Сбраживают углеводы в температурном интервале 35-37°C.
  • Фекальные или термотолерантные колиформные бактерии. Сбраживание углеводов происходит при 44,0-44,5°C.

Это разделение важно при проведении микробиологического анализа. В питьевой воде общих колиформных бактерий быть не должно. Допускается их попадание в распределительные системы подачи питьевой воды, но не более чем в 5% проб, взятых в течение 12 месяцев. Кроме того, при обнаружении общих колиформных бактерий в воде обязателен тест на присутствие термотолерантных видов.

Насколько они опасны

Среди всех представителей колиформных бактерий условно-патогенными считаются представители 15 видов различных родов. Среда их обитания - нижние отделы кишечного тракта человека и животных. Это не одно и то же, что патогенные бактерии . Такие организмы всегда присутствуют в микрофлоре пищеварительного тракта , многие их них помогают организму усваивать и синтезировать витамины, разлагать белки и углеводы. Патогенными (вызывающими заболевания) они могут стать при изменении условий среды, что приведет к их избыточному размножению. Такими причинами может стать снижение иммунитета, гибель нормальной микрофлоры после приема лекарств, угнетение защитных свойств слизистых оболочек и многое другое. Но не факт, что человек, выпивший воды, даже содержащей данные микроорганизмы, заболеет.

А нам это надо?

Выявить колиформные бактерии в питьевой воде не так просто - их не почувствуешь на вкус и не увидишь. Но тем, кто строит дом или хочет купить смягчитель воды, желательно проверить воду на их наличие. Далее в таблице даны нормативы для воды центрального водоснабжения, но стоит учесть, что даже в обычном кулере могут обнаружиться бактерии.

В результате расследования причин смерти было обнаружено, что буквально весь дом был заполнен поедающей мозг бактерией. Несмотря на этот случай, большинство случаев инфицирования не происходит из-за употребления зараженной воды. Человек инфицируется, как правило, купаясь в озерах и реках, когда, к примеру, случайно заглатывает воду.

  • Легионелла - Уже только само по себе название заставляет ужаснуться. Имя свое организм получил в честь американской конвенции легиона в 1976 году, во время которой внезапно погибли 34 человека, а 221 оказались инфицированными.

    Состояние, вызванное легионеллами, теперь называют болезнью легионеров, и ежегодно из-за этого "существа" в больницы попадают около 18 000 человек. А появилось оно, как вы уже догадались, из зараженной воды.

    Среди симптомов болезни: спутанность сознания, лихорадка, потеря координации, рвота, диарея и боль в мышцах.
    В 2001 году более 700 человек в одной централизованной области Испании оказались инфицированными.

  • Бактерия Chaetomium - Это еще один , который выглядит страшнее, чем психоделический "товарищ" под номером 5. Как и черная хлебная плесень, эта бактерия встречается достаточно часто в повседневной жизни. Как правило, она плавает в воздухе в любых влажных местах, начиная от болота и заканчивая потолками в вашей ванной комнате.

    В водопроводной воде она появляется довольно редко, но когда она там есть, вкус и запах жидкости сразу меняется, поэтому человек не станет ее пить. В некоторых случаях, они могут спровоцировать развитие инфекции, известной как феогифомикоз (характеризуется появлением подкожного узла).

    Этот организм также может представлять опасность для людей, страдающих от аллергии на споры.

  • Сальмонелла - Это один из первых микроорганизмов, о котором мы узнаем, будучи детьми. Сальмонелла обладает невероятно длинной историей. Как правило, сальмонелла появляется на продуктах питания, таких как говядина, шпинат, и, конечно же, курица.

    Реже вспышки сальмонеллы происходят не где-нибудь, а в самой простой водопроводной воде. Чаще всего к ее воздействию восприимчивы люди со слабой иммунной системой.

    Бактерия относится к палочковидным грамотрицательным бактериям из рода Сальмонелла, семейство Энтеробактерии (сальмонеллы, шигеллы).
    Микроб устойчив к воздействию окружающей среды . В воде выживает до шести месяцев.

  • Для борьбы с микроорганизмами, для предотвращения их образования (бактерии, микробы, вирусы) в воде, используют различные методы - химический, физические.

    Химический метод обеззараживания подразумевает применение химических реагентов и несет в себе скрытое последействие не безопасное для здоровья человека и окружающей среды. К тому же бактерии имеют свойство привыкания к «химии» и это однозначно ведет к повышению доз применяемых препаратов, ухудшению качественного состава воды и увеличению затрат.

    Физические методы обеззараживания воды стали применять сравнительно недавно. Их преимущество заключается в пролонгированном воздействии на микроорганизмы и отсутствии вредного последействия.

    Но не все методы на 100% эффективны. Поэтому обеззараживание воды, особенно питьевой, должно проводиться комплексно, в сочетании с несколькими методами и каждый метод будет дополнять другой тем самым повышая эффективность процессов уничтожения вредных микроорганизмов в воде.

    Одним из физических методов является Ультразвук.

    Прекрасно справляются с уничтожением бактерий, микробов и вирусов в процессах водоподготовки и водоочистки.